

Technical

Data for Crane Range
(KS-Series) Slipring Motors

CONTENTS

	Page
Data for 6 Pole - S3 / 6 Starts / Hr Duty (Table 6.1)	1 & 2
Data for 6 Pole - S4 & S5 / 150 Starts / Hr Duty (Table 6.2)	3 & 4
Data for 6 Pole - S4 & S5 / 300 Starts / Hr Duty (Table 6.3)	5 & 6
Data for 6 Pole - S4 & S5 / 600 Starts / Hr Duty (Table 6.4)	7 & 8
Data for 8 Pole - S3 / 6 Starts / Hr Duty (Table 8.1)	9 & 10
Data for 8 Pole - S4 & S5 / 150 Starts / Hr Duty (Table 8.2)	11 & 12
Data for 8 Pole - S4 & S5 / 300 Starts / Hr Duty (Table 8.3)	13 & 14
Data for 8 Pole - S4 & S5 / 600 Starts / Hr Duty (Table 8.4)	15 & 16
Data for 10 Pole - S3 / 6 Starts / Hr Duty (Table 10.1)	17
Data for 10 Pole - S4 & S5 / 150 Starts / Hr Duty (Table 10.2)	18
Data for 10 Pole - S4 & S5 / 300 Starts / Hr Duty (Table 10.3)	19
Data for 10 Pole - S4 & S5 / 600 Starts / Hr Duty (Table 10.4)	20
GA Drawing for Frames KS112M / KS132M / KS160M / KS160L	21
GA Drawing for Frames KS180L / KS200L	22
GA Drawing for Frames KS225S / KS225M / KS250S / KS250M	23
GA Drawing for Frames KS280S / KS280M / KS315S / KS315M	24
GA Drawing for Frames KS355S / KS355M / KS355L / KS400L / KS450L	25
GA Drawing for Frames KS500L	26
GA Drawing for Frames KS500LX	27
GA Drawing for Frames KS560LX	28

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

6 POLE

Table 6.1

DUTY: S3, STAHTING CLASS & STARTS/Hr

SUPPLY CONDITION 3 PHASE 415V +-10% 50 C/S ++-3% AMBIENT TEMP, 45/C*

Fracto	Size	31	KSTIZM	KS132MA	KS132MC	KS150M1	KS180M2	KS160L1	KS160L2	KSTBOLT	KS180L2	KS200L1	KS2001.2	KS2255A	KS2255B	KS225MA1	KS225MA2	KS225MB
Annen	Kg ≪	30	109	10	52	200	200	230	230	258	258	375	375	900	50 50 50 50 50 50 50 50 50 50 50 50 50 5	336	188	290
Š	[F]	83	15	69	125	222	225	302	305	540	540	788	909	989	182	813	8	985
es.	LOAD Kgm2	88																
GD2	ROTOR Kgm2	27	0.20	160	280	.640	.640	929	929	1,300	1,300	2,300	2,300	3,100	3,400	3,700	3,700	4,300
À		82	115	\$	#	185	185	270	072	330	230	92	260	380	280	38	300	305
	RA	52	7,6	11.6	10.7	18.0	18.0	17.0	17.0	29.0	29.0	35.0	36.0	40.0	40	44.0	44.0	52.0
	FLC	24	0.0	16	0	13.5	13.5	16.5	16.5	36.1	263	31.5	32.5	45.0	0.44	48.0	48.0	56.5
¥.	POT XFLT	83	9	25	3.4	3	13	2	**	6.6	10.	4.0	0 4	3.8	4.0	8	60 (15)	66
CDF 100%	SPEED	22	930	950	756	970	970	972	972	872	972	975	975	226	716	980	380	382
.02	-	12	5.0	3.0	0	7.5	\$0. (2)	10.0	10.0	15.0	15.0	20.0	6,15	25,0	52.0	30.0	30.0	35.0
	OUTPUT KW HP	23	ŧij.	22	3,7	10	25	7.5	22	11.0	11.0	15.0	is is	40	20.0	22.0	22.0	26.0
	ВА	\$	ou ch	14.0	24.0	19.5	19.5	19.0	0 0	33.0	34.0	41.0	42.6	47.5	93.5	25.0	25.0	03:0
	FLC	φ.	60	73	0.5	14.0	14.0	18.3	18.3	28.5	862	35.5	38.55	47.0	21.0	54.0	0.25	0.53
*	POT	1.1	3.0	2.6	2.8	3.7	3.7	3.6	3.6	4.0	68	2	3,4	60	23	3.2	eu eri	3.2
CDF 60%	SPEED	92	915	940	88	88	886	968	28	250	970	225	226	975	526	87.6	B//6	825
~		5	44	100	0,	8.0	8:0	11.5	11.5	16.8	17.5	23.5	24.0	585	33.0	95.0	35.0	42.2
	OUTPUT KW HP	其	92	2.3	4	5.0	0.9	9.5	58	12.5	13.0	2 521	18.0	22.0 3	24.5	26.0	36.0	37.5
-	HA ×	ξ.	10.2	16.0	27.0	23.0	23.0	22.5	525	38,0	39.0	1 999	53.0	54.0	62.0	60.0	90.0	71:0
	FLC F	12	9.0	73	69 E	18.0 2	16.0 22	21.0 22	23.0	32.0 38	33.0	40.00	65.0	52.0	57.0	61.5 60	10	72.0 77
	POT F XFLT ar	Ψ.	27	53	55	22	3.2	3.0	0	3.5	3.4	3.0	17	80	£2	2.8	28	2.8.7
CDF 40%	SPEED P	10	910	533	뚕	19	968	9969	296	196	296	2962	996	872	87.9	57.5	10	97.6
۳,		on.	2.7	4.0	8	4.0	9.4	13.5	13.5	18.5	50.0	0.72	31,0	33.5	38.2	40.0	40.0	48:0
	OUTPUT KW HP	(2)	20	3.0	7.	7.0 0.7	672	10.01	10.0	14.5	15.0	20.0	23.0 3	35.0	28.5	30.0	30.0	36.0
-	RA.	K	24	12.	34.5	26.0	56.0	26.0	26.0	43.5	45.0	53.5	57.0	60,0	65.4	68.0	68.0	79.5
	FLC amps	ca.	9.9	£8	15.0	18.0 29	18.0	23.5 29	23.5	35.0	98	45.0 5	48.0	57.0	99.0	68.0 51	0.88	78.0 7
-3	POT F XPLT at	w	25	02	2.0	2.8	2.8	2.6 2	5.6	3.1	3.0	2.7 4	10	55	27 8	25 6	10	2.5
CDF 25%	SPEED P	4	906	956	988	096	096	999	086	25	296	298	354	886	198	67.6	Q/G	372
94		രാ	0,0	4	8 8	10.7	10.7	15.5	16.5	22.0	23.0	31.0	33.0	37.5	40.0	46.0	46.0	53.5
	OUTPUT KW HP	cu	6	3.3	45	8.0 1	8.0	11.5	1.0	16.5 2	17.0	23.0 3	24.5	28.0	90.0	34.0 4	34.0	40.0
Esperie	Size	AE.	KS112M	KS132MA	KS132MC	KS160MT	KS160M2	KS160L1	KS150L2	KS180L1 1	KS180L2	KS200U1 2	KS200L2	KS2255A	KS22558	KS225MA1 3	KS225AA2	KS225MB

SHADED OUTPUTS AS PER IPSS

50 C/S + - 3% AMBIENT TEMP, 45K. SUPPLY CONDITION 3 PHASE 415V+/-10%

DUTY: S3, STAHTING CLASS 8 STARTS/Hr

Table 6.1 (Contd.) SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

6 POLE

Frame Stze KS280M2 KS315MA (S315MB K83158B KS28DMT KS3155A KS355LB KSSESLA KSSSOM KS3555 KS280S KS365M 63 KSSEOS KS400L Appro Kg ¥gg 3100 1040 95 1300 1330 1380 2100 2380 2500 540 出 1430 1900 88 8 POT 1249 1423 2130 2130 3017 3818 9280 (Na 1701 27.56 35.5 囊 5086 5466 4 83 LOAD Kgm2 28 GD2 ROTOR Kamiz 10.900 10,900 16,400 17.500 19,800 20.000 39.300 44300 55.000 105.00 5,700 61,000 8.800 5,200 27 689 육 285 SE # 8 290 320 230 133 38 405 460 28 425 83 122.0 323,0 234,0 118.5 125.0 146.0 121.0 200.0 240.0 420.0 330.0 67.0 120,0 121.0 80.0 242.0 232.0 291,0 231,0 63.5 156.0 119.0 ¥. 52 137.0 182.0 120.0 FLC amps 68.0 78.0 888 24 SPEED POT 17.00 83 6.9 4 3.9 4.0 4.0 3.8 30 4 0 3.6 4.0 4.2 4 CDF 100% 990 986 385 986 586 388 986 986 388 68 984 987 8 N 166 175.0 335.0 100.0 170.0 120.0 135.0 150.0 215.0 240.0 609 47.0 60.0 15.0 75.0 OUTPUT KW HP EV. 180.0 132.0 240.0 35.0 100.0 110,0 160.0 30.0 45.0 55.0 55.0 75.0 80.0 90.0 20 140.0 147.0 1420 \$39.D 139.0 1420 282.0 264.0 260.0 259.0 475,0 378.0 82.0 78.0 98.0 AH. 9 141.0 161.0 204.0 FLC 107.01 141.0 157.0 188.0 231,0 268.0 321.0 353.0 99.0 78.0 02 SPEED POT 3.5 3.4 3.9 33 3 3.0 33 33 24 3.4 3.8 3.6 3.8 3.8 17 CDF 60% 88 88 88 50 8 8 983 98 86 88 8 88 8 987 173.0 2000 240.0 2882 370.0 118.0 123.5 140,6 1583 58.0 90.0 22.0 0.06 90.0 OUTPUT KW HP (2) 275.0 105.0 118.0 130,0 150.0 180.0 200,0 43.2 0.78 37.0 23.5 67.0 88.2 920 芝 164.0 530.0 390.0 165.0 167.0 163.0 156.0 390.0 291.0 0.99 112.0 184.0 150.0 255.0 314.0 209.0 238.0 351.0 289.0 92.8 ¥ 9 210,01 100.0 121.0 148.0 148.0 176.0 230.0 FIC POT FLC XFLT amps 88,6 cu 2.8 0 2.8 50 2.8 65 23 3.0 H 330 27 7 4.5 7 Ξ CDF 40% SPEED HG 878 8 2 978 878 용 8 왕 8 8 88 8 F 8 88 395.0 102.0 102.0 137.0 142.0 160.0 178.0 195.0 228.0 268.0 300.0 67,3 84.5 59.0 KW #P di 106.0 200.0 295.0 102.0 120.0 134.0 145,0 170.0 225,0 50.2 3 830 78.0 76.0 œ 101.0 103.0 189.0 197.0 130.0 189.0 185.0 184.0 183.0 368.0 350.0 346.0 349.0 590.0 440.0 Ä 일 105.0 169.0 242.0 135.0 169.0 203.0 211.0 256.0 298.0 347.0 414.0 461.0 BUTES 95.0 ф F 27 9 13 5.5 52 2.5 28 w 22 č. 6 a 2.4 58 8 55 CDF 25% SPEED E 975 975 978 23 938 976 838 엻 88 꾦 88 4 786 987 富 120.0 120.0 200.0 228.0 268.0 360.0 455.0 158.0 165,0 188.0 350.0 64.0 96.5 OUTPUT KW HP 22 m 340.0 240.0 270.0 118.0 123.0 140,0 150.0 170.0 200.0 54.0 8 48.0 720 0.06 CV Frame KS315MB KS2B0M2 XS315MA KS35ELB KSSBOM1 KS3155A KS3158B KSSSSLA KSSSOM X82505 XS2B0S XS3555 XS355W XS400 ÷

DOC-RMPR-0010102

Upto frame size 315. For frame sizes above 315 the applicable ambient temp, will be 40℃.

Table 6.2

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

6 POLE

DUTY: S4 & S6, STARTING CLASS 150 STARTS/Hr

SUPPLY CONDITION 3 PHASE 415V 41-10% 50 C/S +1-3% AMBIENT TEMP, 45)C*

1				CDF 40%	,0	-	7			CDF 60%	35					CDF 100%	%0			ž	GD2	22	POT	Appro	Frame
RA OUTPUT KW HP	29.₹			SPEED	XFLT a	FLC	Æ	KW H	11-24	SPEED	PS	FLC	₩.	KW HR	II S	SPEED	PP Y	FLC	H.		ROTOR Kgm2	LOAD Kgm2	(Na)		Size
7 8	80		6	2	=	12	55	72	55	99	17	₽	13	22	55	22	R	24	83	58	27	28	83	30	31
10.2 1.8	80		2.4	916	30	9.9	0,0	19	5.9	380	3.6	979	7.6	整	1.6	646	9.0	4)	9.8	92	020	1.000	22	109	KS112M
16.0 2.5	2.6		5.	963	2.6	#.# 1	19.4	55	30	8	3	27	11.6	2.0	27	926	5	17	10.3	115	160	1.000	8	172	KS132MA
27.0 4.5	4		0.0	28	25	10.4	24.0	3.7	20	296	함	0.6	197	33	*** ***	296	3.8	10	10.	22	8	1.500	125	82	KS132MC
23.0 6.0	6.0		8.0	898	3.7	14.0	19.5	5.5	2.5	026	5	13.5	18.0							185	.640	1,560	222	200	KS160M1
24.0 8.7	193	_	06	296	933	10 10 10	21.7	55	37.5	970	4	13.5	18.0	4.8	4.4	973	9.4	12.0	10	衰	640	2.400	222	200	KS160M2
21.5 8.5	8.5		12	969	3.6	18.0	18.0	7.5	10.0	226	4.1	16.5	17.0							270	979	2.130	305	230	KS160L1
22.5			12.0	968	en en	19.0	20,02	22	10.0	226	4	16.5	17.0	9	80	226	46	15.0	40	270	570	2.130	305	230	KS1601.2
36.5 12.5			16,8	0.05	4.0	28.5	33.0	11.0	15.0	228	4.8	26.0	29.0							230	1,300	3.100	640	258	KS180L1
38.0 13.5			18.0	026	3.8	0.62	98.0	11.0	16.0	225	4.5	98	29.0	un on	12.7	716	20	25.5	25.0	530	1,300	4.800	540	338	KS180L2
44.0 17.0			23.0	5	3,5	2	39.5	15.0	20.0	57.6	4.0	31.5	35.0							260	2.300	3.800	2885	375	KS200L1
515 17.5	-		100 100	2/5	4	40 100 100	41.0	15.5	21.0	5//6	0.4	325	36.0	13.0	17.5	978	<u>4</u>	56.5	30.0	260	2,300	6.800	909	3/2	KS2001.2
54.0 22.0			59.55	976	32	47.0	47.5	18.5	25.0	716	3.8	45.0	40.0	16.0	23.5	980	4	39.0	34.0	280	3,100	7.200	989	200	KS225SA
62.0 24.5			33,0	6/6	63	0.5	se e	89.0	672	226	0.4	\$	40	17.5	23.5	360	4.	40.6	38.5	280	3,400	7.800	783	50	KS22559
56.0 25.0	25.0		33.55	826	25	52.0	0.02	22.0	29.5	088	3.8	48.0	64.0							88	3,700	5,300	128	類	KS225M1
80.0 26.0	28.0		35.0	8/5	64	54.0	52.0	22.0	29.5	986	3.8	48.0	44.0	19.0	25.5	596	7	440	38.0	360	3,700	8.000	128	535	KS225MA2
68.5 31.D	31.0		un Ta	826	32	0.19	82.0	28.0	35.0	362	8	58.5	520	22.5	30.0	384	20	52.0	45.0	308	4,300	9.300	986	560	KS22SMB

SHADED OUTPUTS AS PER IPSS

Upto frame size 315. For frame sizes above 315 the applicable ambient temp, will be 40℃.

SUPPLY CONDITION 3 PHASE 415V +/-10% 50 C/S +/-3% AMBIENT TEMP, 45/C*

_	Stre	31	KS250S	KSSSOM	KS280S	KS280M1	KS280M2	KS315SA	KS315SB	KS315MA	KSS15MB	KS3555	KS355M	KS355LA	KS356LB	
Annen	\$ ₹	30	940	10	086	1040	1040	1300	1330	1380	1430	1900	2100	2380	2500	
100	E E	83	1249	1423	1704	2130	2130	2756	3017	3648	3864	3818	5086	5466	7447	
· A2	LOAD Kgm2	28	10.400	11,200	13.200	14.200	14.200	15.000	16.000	18.000	21.000	28,000	38.000	43.000	46.500	
GD2	ROTOR Kgm2	27	5,200	5.700	9.800	10.500	10,900	15.400	17.500	19,800	20.000	39.300	44.300	99,000	61.000	
		82	280	320	530	572	440	380	504	460	200	582	350	55	475	
	RA	55	Q SS	49 49 20	105.0	108.0	71.3								207.0	
-	FLC	54	0.59	70.0	\$8.0 1	115.0 1	115.0.7	125,0 166.0	130,0 106,0	152.0 106.0	164,0 108.0	179,0 207.0	210.0 194.0	256,0 193.0	294.0	
at.	POT F	83	0.0	6	87	ni 4	10	4.	4	- 77	9 4	÷.	4 60	50	Δ Ω	
CDF 100%	SPEED 1	23	587	736	986	986	986	986	988	998	586	58	086	992	286	
u		53	35.0	4.	53.6	65.7	65.7	0.88	94.0	107.0	117.9	127.0	150.0	180.0	210	
	OUTPUT KW HP	82	28,0	0,15	40.0	0	49.0	66.0	20.0	900	088	95,0	110.0	135.0	155.0	
	A T	19	5.69	67,0	118.5	0.123	90.08	120.0		119.0			232.0	231.0	234.0 1	
	FLC 9	œ	68.0	78.0	38.0	120.0	120.0 8	187.0	146.0 121.0	166.0	182,0 122.0	200.0 240.0	242 0 23	291.0	323.0 22	
	POT F	23	6.3	4.2	3.9	0.4	5.0	88	3.0	3	- Q	3.6	6.0	5.	6	
CDF 60%	SPEED H	φ	986	98	#	988	986	986	38	886	286	S	98	166	<u>8</u>	
		15	40.0	47.0	66.0	75.0	75.0	1000	102.0	120.0	135.0	0.081	175.0	215.0	240.0	
	OUTPUT KW HP	2	30.0	35.0	48.0	55.0	25.0.	75.0	80.0	0.09	10001	0.0	132.0	160.0	180,0	
	HA HA	5	76.0	90'0			454					1,0,17				
	FLC	čī.	76.0	88.0	107.0 140.0	141.0 146.0	141.0 94.0	158.0 144.0	163.0 140.0	192.0 141.0	204.0 142.0	223.0 271.0	265.0 263.0	328.0 267.0	362.0 265.0	
.0	NOT B	Ξ	ф (2)	5	33	55	33	25	333	35	25	88	55	37.5	a	
CDF 40%	SPEED	01	28	뫍	2862	*	8	84	25	25	28	8	286	98	8	
		cn cn	48.0	0.95	72.0	0,68	69.0	120.0	126.0	144.0	156.0	168.0	210.0	250.0	05/2	
	OUTPUT KW HP	ω	0.96	42.0	53.5	98.5	5.99	0.8	98	107.0	116.0	125,0	155.0	185,0	205.0	
_	AA A	7	84.0	88.0		167.0				160.0				0.982	286.0	
	FLC amps	ф	82.0	860	120.0 161.0	148.0	148.0 112.0	175.0 163.0	186.0 181.0	213,0	230.0 164.0	255.0 314.0	296.0 256.0	358,0 2	397.0 2	
18	FOT 구단	us	32	25	82	50	53	9	50	2	8	12		8	2	
CDF 25%	SPEED	4	880	980	97.9	986	980	188	296	286	983	88	2867	686	686	
	10 1 10 H	e	60.	62.0	82.0	182.0	102.0	197.0	144.0	164.0	179.0	680	228.0	275.0	310.0	
	OUTPUT KW HP	cu	40.0	46.5	5 19	30.0	76.0	102.0	107.0	122.0	134.0	145.0	170.0	205.0	230.0	
The state of	Size	÷	X32505	KSSSOW	KS2B0S	KS280M1	KS2B0M2	KSS15SA	KS31588	KS315MA	KSSTSMB	XS3555	KSSSSW	KSSSSLA	KSSSELB	

DOC-RMPR-0010102

STARTSH: 50 C/S +-3%, AMBIENT TEMP, 45)C*

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

6 POLE

Table 6.3

DUTY: S4 & S5, STARTING CLASS 300 STARTSHI

Franko	SZE	33	KS112M.	KSI32MA	KS132MC	KS160M1	KS160M2	KS160L1	KS160L2	KS180E.1	KS180L2	KS200L1	KS200L2	KS2255A	K82255B	KS225MT	KSZZSMAZ	KS225MB
	\$ \text{\texi}\tex{\text{\tex{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texit{\tex{\text{\text{\text{\text{\texi}\text{\texit{\text{\tex{	30	109	115 KG	2	200 10	200	230 10	230 KG	258 K	258 KB	375 KG	3/2	500	515 88	192	\$38	280
TOG	_	83	18	8	125	222	222	200	305	240	540	287	909	999	781	2	913	586
0		288				1000		*****		1,70,700	77.0	290		- 53	2000	300-24	2-430	
2GD		62	.600	009	1,000	1,560	1,500	2.130	2.200	3,100	3.200	3,800	4,530	4,800	5,100	5,300	5,300	6.200
	HOTOR Kgm2	27	020	180	88	99	.640	92.0	929	1,300	1,300	2.300	2,300	3,100	3.400	3.700	3,700	4.300
ò		58	#	15	‡	185	185	270	270	230	230	280	269	580	280	300	300	305
	ВA	52																
	FLC	24																
%00	XFLT	83																
CDF 100%	SPEED	55																
		22																
	KW HP	88																
	HA HA	4	99	10.3	17.6	16.3	16.3	14.5	75	25.0	25.0	30.0	30'00	34.0	39.5	38.0	38.0	44.0
	FLC	20	9	22	6.5	12.5	125	15.0	15.0	25.5	25.0	28.5	150	39.0	4 5	44.0	0.4	51,0
%	POT XFLT	17	2.0	3.5	3.8	2	<u> </u>	4.6	8.	5,3	2	4.6	4	4.4	4	2	3	40
CDF 60%	SPEED	16	646	926	28	972	972	22.5	276	977	116	97.6	970	98	88	286	88	38
		129	1.6	2.7	**	6.7	1.9	8	8.8	12.7	12.7	17.5	17.5	23.55	24.0	25.5	25.5	29.5
	OUTPUT KW HP	7.	整	5.0	0.0	0.2	0.0	5.9	10	9.6	9.5	13.0	13.0	0.9	18.0	19.0	19.0	22.0
	ВА	5	97.0	11.6	19.7	18.0	18.0	15.8	17,0	27.5	29.0	32.5	36.0	40.0	44.0	42.0	46.0	52.0
	FLC	12	99	5.7	ő	13,5	13.5	15.7	16.5	25.0	26.0	20,5	9	42.0	4	46.0	51.0	56.5
9%0	POT FLC XFLT amps	F	3.6	8	췭	2	14	4.4	7	4.7	5.5	4.0	0.4	3.8	6.4	4.0	3.6	3.9
CDF 40%	SPEED	2	930	950	155	026	970	972	272	228	372	926	50	716	412	086	8	88
		iĝi.	20	99	5.0	2.5	7.5	9.4	10.0	14.0	15.0	18.8	20.0	25.0	27.0	28.0	31.0	35.0
	OUTPUT KW HP	80	#	22	3.7	10	945 90	2.0	in N	531	0.11	14.0	15.0	50.5	8	21.0	23.0	88
	RA	7.	64	13,7	24,0		23.7		20,0		33.0		43.0	47.5	83		25.0	62.0
	FLC amps	9	5.6	4	10.5		35.6		0 01		38.5		18 2	47.0	0.12		3	A 0
2%	잗	3	930	2.6	2.8		333		17		4.0		*	88	60		3.2	3.2
CDF 25%	SPEED	7	915	943	896		1296		88		970		255	975	5,6		878	876
	7-7-7-0	ė	24	3.5	0.9		0.6		12.0		16.8		10 83 84	29.5	33.0		35.0	17
	CUTPUT KW HP	c4	1.8	55	45		6.7		0.5		12.5		17.5	22.0	差		80	31.0
- Control	Size	-	KS112M	KS132MA	KS132MG	KSTGOMT	KS160M2	KSTBOLT	KS160L2	KS180L1	KS180L2	KS200L1	KS200L2	KS22SSA	KS22588	KS225MA1	KS225MA2	KSZSSMB

SHADED OUTPUTS AS PER IPSS

SUPPLY CONDITION 3 PHASE 415V +/-10% 50 C/S +/-3% AMBIENT TEMP, 45/C*

Table 6.3 (Contd.)

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

6 POLE

DUTY: S4 & S5, STARTING CLASS 300 STARTS/Hr

Frame	Stre	50	KS250S	KS250M	KS280S	KS28DMT	KS280M2	KS3155A	KSO155B	KS315MA	KS315MB	KS3555	KS355M	KS355LA	KS355LB	KS400L
Annen	<u>8</u> ₹ <u>8</u>	30	940	10	98	1040	1040	1300	1330	1380	1430	1900	2100	2380	2500	3100
100	E (E)	83	1249	1423	1701	2130	2130	2756	3017	3648	38654	3818	5085	5466	7447	5280
0.2	LOAD Kgm2	28	6.930	7,500	8.800	9.500	009.6	10.000	10.700	12.000	14,000	16.700	25.400	28.700	31,000	90.000
GD2	ROTOR Kgm2	27	5,200	5,700	9.800	10.900	10,300	16.400	17.500	19,800	20 000	39.300	44.300	25.000	61.000	102.00
20		82	280	320	530	27.2	94	380	405	460	909	582	350	425	474	059:
j	RA	52	7/144	1227.	7.7	1-31		3.550	14-	-16	V-07.11		-47411	L.S.	3302	
-	FLC	24														
e.	POT R	83														
CDF 100%	SPEED F	23														
9		12														
	OUTPUT KW HP	20														
-	A A	t9	55.0	50	108.0	112.0	73.0	0.0	0.6	0.0	110.0	0.2	0	3.0	0	0.0
1		8	83	20.5	90.0	11 0.711	117.0	125.0 108.0	133.0 109.0	162.0 106.0	11 0.791	179.0 207.0	210.0 154.0	256.0 198.0	291.0 205.0	355.0 275.0
	POT FLC XFLT amps	1 1	20	7.4	- 55 - 54 - 55	£	# 9	55	4.3	47	\$. \$	4.	4.8	5.0 25	4.8	44
CDF 50%	E X	-	(1) ()	24	-	200	- U	1507			243	715	500	0.400	201	_
23	SPEED	9	786	₩	8	8	8	186	8	8	8	8	266	566	6	200
	OUTPUT KW HP	15	35.0	\$	58.0	68.0	089.0	88.0	96.5	107,0	1200	127.0	150.0	180.0	21.0	275.0
	20 W	7	0.88	M 0	410	20	<u>25</u>	0.88	72.0	60.08	98	88	110.0	135.0	157.0	300.0
	нA	65	63.5	67,0	118.5	120 0 121 0	80.0	120.0	121.0	119.0	1220	240.0	220	231.0	234.0	2000
	FLC	57	68.0	78.0	0.96	580	120.0 80.0	137.0 120.0	146.0 121.0	165.0 119.0	162.0 (22.0	200.0 240.0	242 0 222 0	2010	323,00234.0	490 0 (390 0)
2	POT FLC XFLT amps	Œ	6	4.2	3.9	0	40	3.8	60	42	5	9	4.0	6.5	€ च	55
CDF 40%	SPEED	01	88	58	88	8	98	8	88	8	8	8	8	8	8	8
		a	0.04	47.0	60.0	75,0	75.0	100.0	107.0	125.0	135.0	150,0	175.0	215.0	240.0	3850
	OUTPUT KW HP	ω	30.0	38.0	45.0	8	233	0.55	0.08	8	100.0	110.0	132.0	180.0	180.0	0.076
	¥.	1	78.0	0,08	140.0	146.0	94.0	144.0						580.0		
	FLC amps	Ф	0.92	088	10201	141.0 1	141.0	188.0	166.0 143.0	190,0 140.0	204.0 142.0	223.0 271.0	266.0 254.0	321.0 2	362,0 265.0	475-0 378-0
.0	YELT B	w	98	un en	69	8	88	25	88	10	50 E	32	325	38	55	9
CDF 25%	SPEED	4	82	88	-	죓	383	8	588	酱	98	286	588	966	8	686
		e	48.0	56.0	72.0	0.08	89.0	120.0	127.0	142.0	156.0	168.0	200.0	240.0	275.0	370.0
	OUTPUT KW HP	cu	0 88	45.0	53.5	15 15 15 15 15 15 15 15 15 15 15 15 15 1	598	1 0 00	0.56	1 0/901	116.00 1	125.0	150.0	180.0 2	205.0 2	375.0
- Common	Size	÷	KS2505 3	KS250W 4	KS2B0S	KS280M1 6	KS2B0M2 6	KS3155A	KS31588	KS315MA T	KS315MB 11	KS355S 13	KS355W	KSSSSLA 18	KS355LB 21	XSADO: 2

DOC-RMPR-0010102

SUPPLY CONDITION 3 PHASE 415V 41-10% 50 G/S +1-3% AMBIENT TEMP, 45)C*

DUTY: S4 & S5, STARTING CLASS 600 STARTS/Hr

Table 6.4

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

6 POLE

Denisely	Size	31	KS112M	KS132MA	KS(32MC	KSIBDMI	KS160M2	KS160L1	KS1601.2	KS180L1	KS180L2	KS200L1	KS2001.2	KS2255A	KS2255B	KS225M1	KS225MA2	KS225MB
America	₹ <u>₹</u>	30	109	115	휥	200	200	539	88	258	E	37.5	袋	8	쁑	528	32	260
100	(N)	58	22	8	123	222	222	302	305	540	540	283	909	989	781	813	813	985
20	LOAD Kgm2	28	909	8	1.000		1.600		2200		3.200		\$530	4,800	5.100		5.300	6.200
GD2	ROTOR Kgm2	22	0.00	.160	88	3	95	870	570	1,300	1,300	2,300	2300	3,100	3,400	3,700	3,700	4.300
ř		58	115	£	#9	38	185	270	270	230	230	260	260	280	280	300	300	305
	ВA	83	115	72724					24000	10.00	- C-071		5.530	DOCES	200			
- 1	FLC 1	54																
	POT F XFLT at	83																
CDF 100%	SPEED P	22																
		52																
	OUTPUT KW HP	8																
			Cu Cu	w	0				9		o		0	0	2		40	10
	PS PA	80	es cu	9.5	6		-		12.0		21.0		33.0	0 22'0	3 30.2		93.8	36.8
	T FLC	7 18	4.0	9.0 8	10		10.5 12.7		0.21		6.4 22.7		24.0	33.0	4.6 32.3		41.0	3 42.0
CDF 60%	D POT	17	iii	38	4		-		27		- 20		10	V 25-7	3.50		B	23
CDF	SPEED	9	950	8	296		5.6		88		8		88	286	8		985	786
	OUTPUT KW HP	52	*	25	40		382		7.0		10.4		15	16.8	18.5		25	25.0
	₽₹	2	10	100	3.0		9		64 64		7.8		9.8	12.5	13.8		16.8	18.5
	НА	<u>e</u>	53	10.6	4		13.7		12.8		22.0		25.0	30.0	32.0		4,0	39.0
	FLC	12	60	ici	7,8		25		13,0		23.0		25.0	38.0	34.0		43.0	45,0
9%	PPOT	=	5,4	E	8		55		64		6.0		4	17	4.4		4.5	0.0
CDF 40%	SPEED	2	8948	956	8		096		979		586		125		28		*	18
	54	6	1.6	27	4		5.8		9		5		13.7	177	19.6		53.6	26,3
	OUTPUT KW HP		75	6	(C)		4.2		ió.		100 100 100 100 100 100 100 100 100 100		10.2	22	9		17.6	19.6
	RA BA	7	## ##	11.6	5		15.0		13.55		23.0		24.7	91.0	34.0		28.7	42.0
	FLC amps	œ	60	5.7	60 60		11.8		8		24.0		ор (2)	37.0	36.3		\$6 50	48.0
35	YPCT THE	ın	4.5	eri	3.5		89		99		8.5		2	4	2		4	1.4
CDF 25%	SPEED 1	9	848	8	956		38		87.8		978		186	283	986		583	388
		တ	9	920	4 60		62		8.0		9		6.5	19.0	21.0		25.8	28.0
	OUTPUT KW HP	Z,	27	52	es es		ψ. Ψ		6.0		27.		10.5	3	15.5		19.2	21.0
100000	Size	7	KSTIZM	KS132MA	KS132MC	KS160M1	KS160M2	KS160L1	KS160L2	KS180L1	KS160L2	KS200L1	KS200L2	KS2255A	KS2258B	KS225MA1	KSZZSMAZ	KSZZSMB

Upto frame size 315. For frame sizes above 315 the applicable untbient temp, will be 40%.

DOC-RMPP-0010102

SUPPLY CONDITION 3 PHASE 415V +/-10% 50 C/S +/-3% AMBIENT TEMP, 45IC*

Table 6.4 (Contd.)

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

6 POLE

DUTY: S4 & S5, STAHTING CLASS 600 STAHTS/Hr

Frame	Size	31	KS250S	KS250M	KS280S	KS28DM1	KS280M2	KS3155A	KS3155B	KS315MA	KS315MB	KS3555	KS355M	KS355LA	KS355LB	KS400L
Annen	8g × g	30	940	15	86	1040	1040	1300	1330	1380	1430	1900	2300	2380	2500	3100
100	E E	83	1249	1423	1701	2130	2130	2756	3017	364	38.62	3818	5085	5466	747	9230
~	LOAD Kgm2	28	6.930	7.500	8.800	9.500	9.600	10.000	10.700	12.000	14,000	16.700	25.400	28.700	31,000	50.00
602	ROTOR Kgm2	27	5.200	5,700	9.800	10.900	16.400	17,500	19.800	20,000	29.120	39.300	44.300	92,000	61.000	102.00
- 20		82	280	350	230	27.5	94	380	405	600	909	582	350	425	474	069
	RA	25							1.7							
-	FLC	24														
	POT R	83														
CDF 100%	SPEED P	22														
9		E														
	OUTPUT KW HP	6														
-	Con II	8	-co	o	0	r)	0	0	o			0	q	a	0	0
-	A H	₽.	56.6	9000	0 82.0	0.88	0.96.0	0 84.0	0 83.0	0.18	0 79.0	110.0 147.0	0 124 0	0 124.0	216,0 131.0	255.0 110.0
	r FLC Tamps	18	0.19	686.0	91:0	109.0	109:0	112.0	113.0	133.0	135.0		8	191.0	101/11	255
% 00%	NETTY C	17	5.8	5	523	55	88	2	99	6.2	23	e,	77	7.9	95	10.2
CDF 60%	SPEED	<u>6</u>	586	686	686	88	86	Ø	8	86	88	88	98	88	966	266
	54	15	28.7	35.0	#	52	53.5	70.0	75.0	81.5	98.9	0.06	94.0	114.0	135.0	107.0
	OUTPUT KW HP	7	21.4	28	915	40.0	40.0	220	980	Q.	0.49	0.79	70.0	85.0	100.0	80.0
	ΗA	60	59.5	53.7	84.7	0.50	64.0	0.98	88.0	85,0	0.18	49.0	27.0	28.0	-	24.0
	FLC	čī	0.35	0.07	83.6	120	112.0	150	120.0	139.0	140.0	142.0 149.0	180.0 127.0	194.0 128.0	220,0 134,0	262-0 124:0
.0	POT	Ξ	un un	evi us	4	Til.	22	eu 10	9	00 10	2	00 10	4.7	12	un E	0.6
CDF 40%	SPEED I	01	8	88	88	#	88	8	8	8	28	86	ğ.	100	18	986
32.		d)	30.0	37.50	43.0	le le	925	75.0	78.0	66,0	88.0	0	95.0	116.7	137.0	120.0
	KW HP	ω	22.5	28.0	32:0	43.0	43.0	25.0	98	8	0.89	0.88	71.0	0.78	102.0	900
	¥.	7	51.0	52.0	0.06	0.88	.0.99	92.0	94.0	87.0	0.48	8	130.0		138.0	
-	FLC F	ф	0.09	6.0	99.0	116.0	116.0	119.0	125.0 9	143.0	144.0	117.0	165.0 15	190,0 123.0	225.0 1	270.0 138.0
	POT F	w	en en	0; -	0.5	- 2	5 5	50	5.0	10	50	90 90	72	7.5 10	22 83	82
CDF 25%	SPEED P	4	2962	2867	286	7867	2982	88	696	885	86	8	256	8	8	986
STE.		en	35.0	40.0	46.0	90.00	59.6	76.4	83,0	98.0	91.0	0.56	98.0	120.0	140.8	135.0
	OUTPUT KW HP		24.0 32	30.0	34.0	0.00	1-1	57.0	62.0	1.907.77	680		73.0 98	90.0	1050	100.0
	0.5	्य	8	8	ĕ	4	4.5	Ĭò.	22	8	8	71.0	E.	8	5	100
Person	Size	÷	X32505	KSSSOM	KSSBDS	KS2BOM1	KSZBOMZ	KS3155A	KS31588	KS315MA	KSISTSWB	XS3555	KS355W	X8355LA	KS35ELB	XS400L

Lipto frame size 315. For frame sizes above 315 the applicable ambient temp, will be 40%.

DOC-RMPR-0010102

50 C/S +1-3% AMBIENT TEMP, 45/C* SUPPLY CONDITION 3 PHASE 415V +/-10%

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

8 POLE

DUTY: S3, STARTING CLASS 6 STARTSH Table 8.1

DOC-RMPP-0010102 KS280SA1 Frank KS132MB KS250MB KS132MC KS225MA KS250MA KS132MA KSSSSMB KS200L2 KS250SB KS180L1 KS1801.2 KS225SA KS222SH KSSSOSA KSTEOM KS160L KS200L1 8 Appro (Kg) 510 100 17 215 윩 066 30 12 200 250 28 370 370 썲 550 8 989 700 725 (MM) POT 1 1816 1045 332 48 1586 1797 182 140 280 572 836 83 22 194 2 \$ 434 196 LOAD Kgm2 28 GD2 ROTOR Kgm2 10.500 5,730 1,170 2.170 2:170 4,380 5,120 5,340 7,430 1,170 4,020 4,630 6,830 165 190 8 280 740 27 220 210 9 ŝ 233 270 275 280 270 355 ž 105 200 235 235 255 525 183 330 83 104.0 37.5 58.5 53.0 27.4 410 40.5 47.0 12.0 14.6 19.2 45.5 16.2 13.0 19.2 26.2 49.0 HA. 56 83 FLC 0.00 30.0 40.0 45.0 59.0 66.0 78.0 86.0 50.0 51.5 100 5 20.0 29.0 67.0 5.5 82 8.8 24 F F 4 4.6 4.5 9.0 3.8 3.6 3,8 43 3.7 4.6 4.8 4.5 20 3 3.5 3.5 4.3 3.8 83 CDF 100% SPEED H 735 125 12 135 732 730 735 38 器 超 38 38 335 736 22 記 725 727 127 20.0 22.4 27.0 29.5 35.0 20.0 16.5 36.0 60 KW HPUT 10.0 10.0 15.0 25.0 61 (N 3.0 4.0 5.5 1,5 Š 20,0 37.0 12 15.0 16.7 18.5 22.0 28.0 27.0 30.0 3.0 11.0 17 22 九 23 ¥ 55 17 123.0 120 47.0 455 58.0 12 13.6 18.3 14.0 17.8 27.5 29.8 32.0 48.0 58.0 69.5 58.5 63.0 ¥ 9 FLC amps 22.2 43.0 49.0 £ 629 71.0 74.0 84.0 84,0 16.0 212 31.0 32.5 80 9 90 9.8 6.7 60 X 40 9 1.7 3.0 3.9 8 3.3 3.2 38 3.9 33 밁 3.8 Ţ Z 8 3 3.2 R CDF 60% SPEED EG 736 710 23 710 710 733 73 8 2 733 9 728 720 725 724 728 22 733 12 33.0 存 50.0 272 35.0 124 18.0 23.5 59.0 KW FBUT 5.7 38 8 9 9.0 11.5 16.8 582 43.0 12 17.5 24.5 800 31.0 400 13.5 20.2 37.0 50 25 3.6 4 13 52 5 12.5 22.0 32.0 芝 102.0 140.0 37,0 21.0 55.0 65.0 54,0 Æ 23 4.7 20.0 16.3 20.0 25.7 200 34.5 54.0 82.5 67.5 72.5 9 7.0 FLC 54,0 26.0 34.0 53.0 58.0 80.0 800 12.2 17.5 23.5 32.0 47.0 82.0 2 9.0 2.0 9.8 둳 2.6 28 28 28 2.8 7 Ş S 4.5 28 2.8 2.8 밁 2.8 3 B 33 33 CDF 40% SPEED Eq 9 是 お 502 200 提 装 735 2 7 H 22 32 B £ 色 23 品 8 35,0 07.0 10.0 15,5 19,5 27.0 33.5 385 40.0 50.0 OUTPUT KW HP 135 23:0 50.0 57.6 3.0 3.8 5.0 7.0 0 23.0 28.5 37.0 50.0 15 28.0 30.0 37.0 10.0 2 15.5 900 2.0 25 53 3.7 \$2 73 00 115.0 159.0 22.0 28.3 30.8 61.5 0'54 75,0 17.2 39.2 52 62.0 60.5 85,0 78.5 95.0 13.4 299 23.7 B. 1 NOT FLC 101.0 51.0 2 10,00 10.6 25.0 63.0 89.0 128 0.8 88 900 84.0 18.9 37.4 8.4 100 ф 3 28 28 3.0 50 52 io 99 8 52 23 83 30 27 5 io. Gi 2 ë 53 E 735 732 4 700 38 100 75 2 7 22 28 N 727 727 12 23 18 728 788 26.4 OUTPUT KW HP 22.0 36.0 37.5 55.0 11.0 16.0 23.5 31.0 44.0 47.0 58.0 66.0 15.5 3 ලා 88 88 22 23.0 22.0 57.0 12.0 57.7 200 33.0 35.0 4.0 420 58 17.50 16,5 CV 蕊 30 ÷ 12 8.2 KS280SA1 KS250MA **KS250MB** Frame KS132MA KS132MB KS132MC KS225MA KS225MB KS180L1 Size X8200L2 KS22558 MS2508B XS160.2 K82258X KSSSSSA KS160M KS200L1 KS160L -

SHADED OUTPUTS AS PER IPSS

* Upto frame size 315. For frame sizes above 315 the applicable ambient temp, will be 40 VC.

SUPPLY CONDITION 3 PHASE 415V +I-10% 50 C/S +I-3% AMBIENT TEMP, 45/C*

Table 8.1 (Contd.)

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

8 POLE

DUTY: S3, STAHTING CLASS 6 STARTS/Hr

İ	-	2000		CDF 40%		- 1	1		CDF 60%			- 144	9.00.00	- 1	CDF 100%	%D0		- 1	- SA	GD2	22	POT	Appro	Frame
A A		KW HP	T SPEED	ED POT	T FLC Tamps	s HA	86 €	KW HP	SPEED	XFLT	FLC	HA H	OUTPUT KW HP		SPEED POT rpm XFLT	XFLI	FLC	¥ K		ROTOR Kgm2	LOAD Kgm2	(Nm)	<u>₹</u> 8	Stre
1		ω	01 0	Œ	57	5	7	15	္အ	17	32	19	20	12	22	83	24	55	82	27	28	83	39	31
181.0		9 0.19	68,0 735	28		194.0 142.5	44.0	59.0	736	8.3	100	123.0	37,0	50.0	738	9	85.0	104.0	210	10,800		1853	066	KS280SA2
126.0 135.0		24.0	72,5 735	3.0		112.0 132.0	47.0	62.5	739	3	106.0	116.0	40.0	53.5	32	4,0	83.0	100,0	345	11,900		2102	1020	KS280SB
116.0 138.0		51.0	68.0 7.35	28		104.0 120.0	44.0	59.0	738	3.3	ä	103.0	37.0	50.0	738	8	85.0	87.0	399	12.700		283	1050.	KS280SC
167.0		63.0 8	84.5 735	2.6	120.0	0 144.0	55.0	75.0	736	33	108.0	126.0	47.0	62.5	738	3.9	88.0	108.0	265	13.500		2370	1075	KSZBOMAT
168.0		64.5	86.5 735	28		122.0 147.0	990	76.0	736	3.2	110.0	128.0	47.0	62.5	738	69	980	108.0	260	13.500		2343	1075	KS280MA2
138.5 135.0		25 53	86.5 735	88		122.0 119.0	86.0	78.0	738	es es	110.0	103.0	47.0	62.5	738	60	98.0	87.0	335	13.900		2343	1090	KSZBOMB
154,0 168.0		0.69	92.0 735	28	_	134.0 147.0	59.0	78.0	736	64	118.0	126.0	50,0	0'29	738	89	106.0	106.0	285	13.900		52508	1090	KSZBOMB
180.0		90.0	107.0	3.0	100000	150.0 156.0	70.0	94.0	E	3.4	137.0	137,0	0'00	80.0	97	4.0	125.0	118.0	310	22.000		3114	1385	KS315S1
180.0		0.08	107.0 735	3.0	150.0	0 156.0	10.0	940	737	7	137.0	137.0	0'09	80.0	篾	4.0	125.0	118.0	310	22,000		3114	1385	K831552
187.0	1.75	100.0	135.0 735	30	10000	186.0 163.0	88.0	117.9	737	3.4	170.0	143.0	75.0	100.0	738	4.0	148,0	122.0	370	26,300		3862	1475	KS315M1
187.0		100.0	135.0 735	970	1311.11	186.0 163.0	0.88	6 H	727	2)	170.0	143.0	75.0	1000	25	4	148.0	122.0	370	26.300		3885	1475	KS315M2
234.0		125.0 16	168.0 738	£		237.0 195.0	110.0	150.0	740	3.5	215.0	1720	95.0	127.0	740	*	196.0	148.0	380	42.060		2005	2000	KSSSSSA
238.0	20.0	140.0	188.0 738	32	- 22	254.0 197.0	120.0	160.0	740	3.6	234.0	168.0	105.0	140.8	740	4.2	216.0	148.0	435	46.700		5788	2120	KS3555B
232.0		160.0 21	215.0 738	3.2	17.2	306.0 200.0	140.0	188.0	740	3.7	276.0	175.0	120.0	160.0	240	4.3	252.0	150.0	460	51,600		6615	2250	KS385M
500.0		20000	268.0 740	3.5	_	378.0 417.0	170.0	230.0	742	3	338,0	347.0	145.0	195.0	743	4,8	392.0	398.0	38	64.900		8945	5200	KS3551.
422.0 364.0	44	20002	268.0 738	54		360.0 304.0	170,0	288.0	740	3.7	318,0	255.0	145.0	195.0	742	4	286.0	227,0	8	76,000		8283	3100	KS400LA
522.0 392.0	100	250.0	335,0 738	100		445,0 329.0	210.0	285.0	740	9,6	387.0	277.0	180.0	240,0	75	cA cA	345.0	237.0	460	90.100	2.01	0696	3350	KS400LB
610,0 516.0		30000	400.0 740	2		536.0 444.0	260.0	350.0	Ξ	B	477.0	385.0	220.0	205.0	742	4	421.0	328.0	415	162.80	7	<u>35</u>	4100	KS450LA
776,0 574.0		380.0	510.0 740	ə		563.0 485.0	330.0	440.0	741	3.6	588.0	588.0 422.0	280.0	375.0	742	4.2	9011	518.0 358.0	88	188.90		15179	4300	KS450LB

SHADED OUTPUTS AS PER IPSS

• Upto frame size 315. For frame sizes above 315 the applicable ambient temp, will be 40%.

SUPPLY CONDITION 3 PHASE 415V 4-10%. 50 C/S +1-3% AMBIENT TEMP, 45)C*

Table 8.2 SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

8 POLE

DUTY: S4 8 S5, STARTING CLASS 150 STARTSHI

Eroents	Ske	31	KS132MA	KS132MB	K8132MC	KS160M	KSHEOL	KS180L1	KS180L2	KS200L1	KS2001.2	KS225SA	KS2255B	KS225MA	KS225MB	KS2505A	KS250SB	KS250MA	KSZSOMB	KS230SA1
Anna	\$ ₹	30	109	115	120	200	215	250	250	939	370	210	52	550	85	8	099	700	725	066
100	[J.]	83	88	102	140	麗	280	73	424	434	572	989	196	1045	1117	55	1498	1506	1797	18.16
~	LOAD Kgm2	28	230	1.000	1,730	2.530	3,740	5,100	6.000	7.200	10.890	12.000	12.900	10.800	14.100	15.800	22.500	15,800	24.000	17,000
602	ROTOR Kgm2	27	165	.190	560	98	.740	1.170	1,170	2.170	2.170	4.020	4,380	4.630	5,120	5,730	6,340	6.830	7.430	10,800
- 2		82	105	110	110	8	225	235	235	255	592	220	0.22	275	585	SPS	270	330	355	210
	НA	52	7.8	93	14.0				17.2		24.0	36.0	32.5		6.6	450	- 6		44.0	
-	FLC	24	4,7	iri iri	0.8				8.5		27.2	38.0	44.5		0.64	54.0	64.0		70.0	
ž.	POT	83	ćá ćá	4	33				8		4,1	929	4		evi us	9 9	un un		4.5	
CDF 100%	SPEED	83	720	720	720				732		735	737	737		157	82	738		738	
0,2,		22	đ	64	60				0		13.5	17.5	19.5		53.9	28.0	29.5		35.0	
	OUTPUT KW HP	8	2	17.	5.6				2'9		10.0	130	14.5		17,6	9	22.0		28.0	
	q.	22	ai m	12.0	16.2	13.0	14.0	100	961	292	27.4	410	37.5	40.5	5.5	47,0	500	40.0	61.0	104.0
	FLC	92	5.2	6.2	9.6	10.5	13.7	19.0	0.00	29.0	30.0	40.0	45.0	900	un En	8	999	0.70	78.0	85.0
% **	POT	11	3.5	35	63 93	13	ä	5	e7 **	3.8	3.7	6.6	4.8	##	9.6	5.0	4.8	45	8.0	3.8
CDF 60%	SPEED	9	715	715	345	725	227	25	727	782	730	735	735	252	25	25	735	735	735	25
		15	64	3.0	4.0	5.5	22	25	10.0	15.0	15.5	20:02	22	25.0	27.0	505	35.0	36.0	40.0	50.0
	OUTPUT KW HP	#	27	22	3.0	\$	a	7.0	13	11.0	11.5	15.0	18.7	18.5	50.0	22.0	8	27.0	30.0	37.0
	HA	65	eg E	4.2	19.4	15.0	17.8	23.6	93.6	28.6	32.0	47.0	45.0	44.0	69,0	0'99	70.5	55.0	63.0	114.0
	FLC	th CA	8	6.9	9 6	11.6	16.0	22	81 4	55	85 80 80 80 80 80 80 80 80 80 80 80 80 80	43.0	48.5	52.0	59.0	62,0	7.0	70.0	84.0	90.0
200	POT	æ	20	2.8	2.8	2.6	2.8	27	2	3.5	64 62	43	3.8	42	9	4	9	4	2	25
CDF 40%	SPEED 7	10	705	705	705	021	822	19	22	730	ızι	730	733	72	25	S	82	733	738	737
		on.	2.0	3.5	8.4	6.4	0.0	113	12.5	16.0	18,0	23,5	27.0	27.0	35.0	35,0	5.5	40.0	50.0	55.0
	OUTPUT KW HP	α)	61	92	388	8.	23	22	6.9	973	13.5	17.5	902	20.0	98	28.0	<u>8</u>	30.0	97.0	41.0
	H. H.	ĸ	13.4	16.4	22:0	16.3	200	24.1	0.65	33.2	97.0	54.0	5	50.5	0.88	64.0	4C	62.0	73.0	132.0
	PLC amps	cα	92	1.8	10.6	122	271	727	0,82	33.6	88.5	47.0	83.0	57.0	65.5	0 7	0.08	79.0	5 26	96.0
20	POT P	20	58	58	52	2.5	25	22	27	3.0	27.2	45	8	3.6	ř	6	2	3.6	25	3.0
CDF 25%	SPEED P	¥	700	200	200	212	212	27.	2112	727	724	730	730	731	230	230	730	730	730	735
.07.		ത	eu es	0.4	un un	2.0	10.0	12.7	10	18.8	21.0	27.0	31.0	31.0	38.8	40.0	50.0	46.0	58.0	62.5
	OUTPUT KW HP	cu	2.4	3.0	<u></u>	2.2	27.5	9.5	19	14.0 1	15.5	20.0	33.0	23.0	80.0	9000	37.0	34.0	43.2 5	47.0
1	Size	¥	KS132MA	KS132MB	KS132MC	KS160M	KS160L 7	KS180L1 9	KS180L2 1	KS200L1 1	KS200L2	KS225SA	KS2258B	KS225MA 2	KS22SMB 2	KSSEGSA	XS250SB 3	KS250MA 3	KS250MB 4	KS280SA1 4

SHADED OUTPUTS AS PER IPSS

• Upto frame size 315. For frame sizes above 315 the applicable ambient temp, will be 40%

SUPPLY CONDITION 3 PHASE 415V +I-10% 50 C/S +I-3% AMBIENT TEMP, 45/C*

Table 8.2 (Contd.)

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

8 POLE

DUTY: S4 & S5, STARTING CLASS 150 STARTS/Hr

					CDF 40%	9.0		\neg			CDF 60%	e l	1			STE .	CDF 100%	8	1		λ	Ø	602	POT	Appro	Frams
POT FLC RA	V	40	8€	KW HP	SPEED	POT XFLT	FLC	₩	OUTPUT KW HP		SPEED	POT	FLC amps	HA H	ØUT₽	5±	SPEED	POT YFLT	FLC amps	RA		ROTOR Kgm2	LOAD Kgm2	E E	<u>§</u> §	
ca ca	- 7	1	ω	đ	10	Œ	ם	55	14	15	16	13	32	49	50	153	22	N	24	25	83	27	28	83	30	31
2.8 105.0 145.0	0	45	44.6	98.0	738	60	0.38	123.0	37.0	90.0	738	33	85.0	104.0	31.0	40	740	8,8	74.0	0,98	210	10,800	30.000	1853	066	KS280SA2
29 113.0	0	28	48.0	0.40	352	6.0 (6.0	107.0 118.0	118.0	40.0	33.5	738	9	88	100.0	3	99.0	746	47	67.0	94.0	245	11.900	32,400	2102	1020	KS280SB
28 105,0 122.0	0	1220	40	0,62	82	8	94,0	103.0	0.75	20.0	128	3.5	88.0	07.0	0.10	4	740	A (D	74.0	73.0	264	12.700	30.000	1853	1050	KS280SC
3.0 114.0	-0	137.0	62.0	70.0	Æ	2	105.0 119.0	119.0	47.0	62.5	蹇	3.8	98.0	108.0							265	13.500	21.600	2370	1075	KSZSOMAT
2.5 124.0		0 150.0	98	76.0	738	3.2	110.0 128.0	128.0	47.0	52.5	738	9	88	108.0	40.0	50.5	740	4	0706	92.0	285	13.500	38.400	2343	1025	KS28DMA2
2.8		124.0 120.0	98	76.0	738	3.2	110.0 103.0	103.0	47.0	62.5	738	3.9	88	87.0	40.0	53.5	740	4.8	0.08	74.0	338	13.900	38.400	2343	1090	KS280MB
28 136		136.0 149.0	59.0	79.0	738	32	118.0 129.0	128.0	20.0	67.0	38	98	106.0	106.0	42.0	56.0	740	4.5	96.0	90.0	285	13.900	39.000	2506	1090	KS280MB
3.1	166	145.0 147.0	999	88.0	737	3.6	132.0 130.0	130.0	0.03	80.0	738	4.0	125.0	118.0							310	22.000	25.500	3114	1385	KS316S1
27 16	- 93	160.0 168.0	72.0	98	737	8	146.0 141.0	141.0	0.09	80.0	738	3.8	125.0	118.0	52.0	20.0	740	4.6	114,0	102.0	310	22.000	40.000	3114	1385	KS31552
3.1	180,0	0 154.0	83.0	112.0	757	3.3	162.0 135.0	135.0	75.0	0.001	738	97	148.0 1	122.0							370	26,300	31,300	3882	1475	KS315M1
- 00 (N	198.0	0 172.0	0.38	115,3	737	3.4	165,0 140.0	140.0	75.0	100.0	287	4.0	148.0	122.0	20	98.0	740	4.5	137,0	104.0	370	26.300	54,000	3882	1475	KS315M2
28	62	260,0 219.0	115.0	155.0	B	3.5	222.0 178.0	178.0	98.0	127.0	92	4	196.0	148.0	75.0	100.0	745	ις. ενί	169.0	118.0	380	42,000	76.000	5007	2000	KS355SA
29	267.0	0 217,0	120,0	160.0	740	3.6	234,0 168.0	158.0	105.0	140.8	240	4.2	216.0	148.0	85.0	114.0	743	evi us	189.0	120.0	435	46,700	84,000	5788	2140	KS355SB
3.4	8	292.0 168.0	132.0	175.0	740	319	264.0 165.0		120.0	160.0	740	4.3	252.0	150.0							480	31,500	94.000	6615	2250	KS355M
4.0	8	394.0 409.0	175.0	235.0	242	4.0	344.0 341.0	341.0	145.0	195.0	743	4.8	3050	284.0	115.0	155.0	745	4.6	269.0	238.0	300	64.000	118,00	8945	2500	KS355L
3.0	50	376.0 320.0	175.0	235.0	740	3.6	325.0 267.0	267.0	145.0	195.0	742	43	286.0	221.0	115.0	155.0	744	4.9	248.0	174.0	400	76.000	116.00	8558	3100	KS400LA
3.0 47	140	475,0 355.0	220,0	285.0	740	3.4	400.0 290.0	290.0	180.0	240.0	74	(N)	345,0	237.0	140.0	188.0	747	4.6	297.0	185.0	460	96.100	125.00	0696	3350	KS400LB
3.0	40	566.0 473.0	285,0	355.0	741	(4) (7)	482.0 382.0	382.0	220.0	82	742	43	421.0	326.0	170.0	228.0	744	es us	380.0	253.0	415	162.80	138.00	188	4100	KS450LA
30	(2)	708.0 520.0	330.0	445.0	741	55	662.0 434.0		280.0	375.0	₩.	4	520.0	356.0	220.0	295.0	¥	9.6	442.0	282.0	084	188.80	160.00	16173	4300	KS450LB

SHADED OUTPUTS AS PER IPSS:

• Upto frame size 315. For frame sizes above 315 the applicable ambient temp. will be 40%.

SUPPLY CONDITION 3 PHASE 415V +-10% 50 C/S ++-3% AMBIENT TEMP, 45/C*

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

8 POLE

Table 8.3

DUTY: SA & SE, STAHTING CLASS 300 STAHTS/Hr

_	Wi Size (Kg)	30 31	109 KS132MA	115 KS132MB	120 KS132MC	200 KS160M	215 KS160L	250 KS180L1	250 KS180L2	370 KS200L1	370 KS200L2	510 KS225SA	525 KS2255B	550 KS225MA	S40 KS225MB	540 KS250SA	660 KS250SB	700 KS250MA	725 K8250MB	990 KS280SA1
100		83	83	102	140	167	280	8	424	434 3	572	836	196	t045 5	1117	88	1498	1506	7 7871	1816
-	Kgm2 ()	28	350	.670	10150	2,530	3,740	5,100	4.000	7.200 4	7.200	8:00	8.600	10.800 1	9,400 1	10.500	15,000	15,800 1	16.000 1	17,000
602	ROTOR LC	27	165	190	280	550 2	3.	1.170 5.	1,170 4	2,170 7.	2.170 7.	4,020	4,380 8.	4,630 10	5.120	5,730 10	6,340 15	6.830 15	7.430 16	10,800 17
		92	105	110	110	3,	7. 225	235 1.	235 1.	255 2.1	255 2.	220 4.0	0.22	275 40	265 5.1	280 55	270 6.	330 6.1	355 7.4	210 10.
	H.A	52	900	गर	75	#7.1	- 24	:94:	EW.	**	ey.	291	50	79	(CA)	TV.	-DV			2
-	FLC F	24																		
uf.	POT R	83																		
CDF 100%	SPEED F	23																		
o.		12																		
	OUTPUT KW HP	23																		
-	A T	49	7.8	6.3	14.0	113	127	F: 9	17.2	23.5	24.0	36.5	33.5	95.0	43.0	43.0	49.1	44.0	44.0	88.5
	FLC P	φ.	4.7	15	9.0	9.6	12.8	18.0	100	26.7 2	27.2	37.0	45.5	46.0 3	49.0	55.0	4.5	63.0 4	4 0:02	76.0 8
	POT F	1.1	64	3.9	37	3.4	3.9	2	8 4	2	4.3	- F	85	5.2	4,8 4	un un	PV NO	5.2 6	5.7.3	4.3
CDF 60%	SPEED P	92	720	720	720	121	8	M	21	736	735	737	737	737	25	737	757	7.8	738	748
		15	OI .	83	in in	920	7	88	0,6	13.1	13.5	17.5	20.0	21.5	25.5	67.0	520.55	32.0	38.0	43.0
	OUTPUT KW HP	#	2	100	92	5.7	9	12	12	8.0	10.01	13.0	15.0	16.0	0.63	20.0	55.0	24.0	28.0	32.0
	HA.	5	60	12.0	16.2			18.0	19.0	25.0	27.4	41.0	37,5	41.1	46.5	47.0	0.89	48.0	51.0	98.0
	FLC	12	cq	69	8.8			10.0	2002	1.12	30.0	40.0	45.0	48.0	un Vo	28,0	62.0	66.0	0.82	82.0
38	POT FLC XFLT amps	z.	3.5	33	64			5	4 0)	2	37	4	6	94	4,6	9.0	4	7	5.0	4.0
CDF 40%	SPEED	5	715	715	77.5			æ	727	ē	730	735	738	735	325	25	252	736	735	922
		ch.	50	3.0	4.0			ă	10,0	14.0	200	20:0	22.4	23.5	27.0	88	35.0	35.0	40.0	47.0
	OUTPUT KW HP	α	1,7	22	3.0			92	7,5	10.5	1.5	15.0	16.7	17.5	50.0	82.0	0.95	28.0	30.D	35.0
	HA.	K	11,8	69	19.4				933		32.0	50.0	46.5		61.0	92/0	in F		030	
	FLC amps	ш	8 8	639	100				22.5		83.5	45.5	0.08		1 19	12	72.0		84.0	
2	YPCT a	S	52	64	92				en en		25	200	22		3.5	7	9 0		7	
CDF 25%	SPEED F	4	705	202	210				22.2		727	732	733		230	\$2	733		73	
		ത	65	3.5	4.8				12,51		18.0	25.0	57.5		36.0	36.0	43.0		0.03	
	OUTPUT KW HP	cu	15	2.6	3.6				2		13.5	18.5	585		27.0	27.0	08		37.0	
1	Size	¥	XS132MA	KS132MB	KS132MC	KSteam	KS160L	KS180L1	KS180L2	KSZOOLT	XS200L2	KS225SA	KS22588	KSZZSMA	KS22SMB	KSSEGSA	KS250SB	KSSSOMA	KS250MB	KS280SA1

SHADED OUTPUTS AS PER IPSS

• Upto frame size 315, For frame sizes above 315 the applicable untbient temp, will be 40%.

£0

50 C/S +/-3% AMBIENT TEMP, 451C* SUPPLY CONDITION 3 PHASE 415V +C10%

Table 8.3 (Contd.)

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

8 POLE

DUTY: S4 & S5, STARTING CLASS 300 STARTSH

DOC-RMPP-0010102 KS2B0MA2 KS2B0SA2 K S 28 GMA 1 Frame XS315M2 KS450LA KS280SB KS280MB KS280MB KSADOLA KS450LB KS28050 KSSESSB KS400LB (531552 KS315MT KSSESSA KS316S1 KS355M ē K8385L Appro (Ag) 4300 2000 2120 4100 1020 1075 1475 1475 066 1050 1075 1090 1090 1385 1385 2500 3100 3350 2250 39 15173 (NA) 21/2 2343 2343 3114 11984 POT 3114 3892 3892 5788 6615 8945 3269 0696 1853 1853 2370 2558 88 8 Kom2 101.00 21.600 25.600 26,700 31,300 50,700 55.000 76.000 82,000 99,000 20,000 20.000 21,600 26.000 25.500 36,000 60.000 76,000 25,500 28 GD2 ROTOR Kari 22,000 26,300 46,700 188.80 11.900 12,700 13,900 13.900 26,300 42,000 64,000 76,000 90,100 162.30 10,800 13,500 13.500 22:000 51.500 27 230 245 335 380 282 뙲 310 370 370 435 300 89 460 415 480 β 88 285 582 310 量 Æ 52 POT FLC XFLT amps 24 83 CDF 100% SPEED E 33 WW HE čú 8 102.0 104.0 105.0 125,0 132.0 257.0 198.0 464,0 306,0 78.0 137,0 104.0 194,0 128.0 308.0 190.0 377.0 274.0 88.5 B ¢n 95.5 80.0 94.0 96.0 92.0 268.0 FLC amps 94.0 114.0 139.0 178.0 236.0 284.0 116.0 81.5 94.0 98.0 89.0 81,5 92.0 18 전 9.4 in in 5.5 ÷ 9 9,0 9 40 17 5 4 \$ Ç 4 4 5.0 5.0 5.6 90 Ģ CDF 60% SPEED E 9 25 740 趸 249 740 740 740 740 8 743 743 243 745 343 743 743 3 8 130 107.0 120.0 168.0 168.0 200.0 250.0 320,0 140.0 46.0 47.0 48.0 55.0 98.0 58.0 97.6 70.0 21.0 87,0 86.0 F 9 9 125.0 150,0 185,0 240.0 105.0 125.0 ₹ 42.0 65.0 64.0 80.0 90.0 34.0 35.0 34.0 41.0 42.0 43.0 52.0 53.0 4 286.0 221.0 518.0 358.0 1040 100.0 104.0 108.0 118.0 122.0 144.0 345.0 237.0 108.0 108.0 112.0 143.0 117.0 196,0 148.0 216.0 148.0 302.0 298.0 422,0 326.0 87.0 87.0 AA (7) 125.0 121.0 148.0 246.0 김 ашря 93.0 95.0 088 98.0 88.0 14.5 CH XFLT SPEED POT 9 3.9 9 4 4,2 61 4 7 3.8 42 40 Ş 48 14 43 = 3.9 A 5 3.9 4 CDF 40% E 윩 好 742 10 8 28 2 743 345 8 18 18 738 738 28 200 8 3 甚 38 127.0 240.0 285.0 375.0 62.5 100.0 140.8 155.0 195.0 198.0 50.0 53.5 67.0 50.08 77.0 0.08 96,5 OUTPUT KW HP 60.0 523 cti 180.0 145.0 220.0 280.0 105.0 115.0 145.0 37.0 50.0 95.0 40.0 47.0 75,0 200 47.0 60.0 72.0 45.0 57.0 00 290.0 168.0 274.0 385.0 130.0 178.0 428.0 125.5 118.0 106.0 128.0 103.9 146.0 149.0 X 88 PLC amps 107.0 110.0 110.0 120.0 144.0 178.0 222.0 234.0 344.0 330.0 388.0 477,0 595.0 0.96 0.36 ф PF E) 01 er er (E) eų iri 10 3,6 40 3.5 9.5 in eri 60 35 9.4 37 40 CDF 25% SPEED E 336 736 736 738 736 136 23 740 742 740 740 382 736 4 7 74 450.0 100.0 133,5 155.0 160.0 235.0 240.0 285.0 350.0 76.0 OUTPUT KW HP 64.0 76.0 81.5 60.0 60.0 g 335.0 220,0 115.0 120,0 175.0 180.0 260,0 75.0 58.0 56.0 61.0 92.0 45.0 48.0 45.0 cu KS280MA2 KS280SA2 KS280MA1 KS450LB Frame KS280MB KSZBOMB KS315MT KS315M2 KS400LB KS280SB KS2BDSC K831582 K83558A KS355SB KS400LA KS450LA K8315S1 KS355M K8355L

 Upto frame size 315. For frame sizes above 315 the applicable ambient temp, will be 401C. SHADED OUTPUTS AS PER IPSS

SUPPLY CONDITION 3 PHASE 415V +--10% 50 C/S +--3% AMBIENT TEMP, 451C*

DUTY: S4 & S5, STARTING CLASS 600 STARTSHE

Table 8.4

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

8 POLE

SPEED POT FLC RA OUTPUT S	SW CDF 40% SPEED POT FLC RA	POT FLC RA OUTPUT SPEED POT FLC RA	OT FLC RA OUTPUT SPEED POT FLC RA	RA OUTPUT SPEED POT FLC RA	CDF 40% OUTPUT SPEED POT FLC RA	SPEED POT FLC RA	CDF 40% SPEED POT FLC RA	% POT FLC RA	OT FLC RA	HA	_	DUTPU		· UI	CDF 60% SPEED POT	4		AR O	DUTPUT		2 0	0% POT FLC	ag 2	₹	ROTC	GD2 DR LOAD	-		0	Frame Size
rpm XFLTamps KW HP rpm XFLTamps	rpm XFLTamps KW HP rpm XFLTamps	XFLT amps KW HP rpm XFLT amps	amps KW HP rpm XFLT amps	KW HP rpm XFLT amps	KW HP rpm XFLT amps	rpm XFLT amps	rpm XFLT amps	XFLT amps	Samps	200	10	*	± .		20		-	-	8	-		H H					9	~		1
3 4 5 6 7 8 9 10 11 12 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 7 8 9 10 11 1Z	2 10 11 12	8 9 10 11 12	9 10 11 72	10 11 12	11 12	D.		73	-	14 15		2	-	18	e e	8		2	23	27 63	8	7.7	100	R		S	5
9 705 28 58 11,8 1,7 2,3 7,15 3,8 5,2 9,5	2.9 5.8 11,8 1,7 2.3 7,15 3.6 5.2	2.9 5.8 11,8 1,7 2.3 7,15 3.6 5.2	58 11,8 1,7 2,3 7,15 3,5 5,2	11.8 1.7 2.3 7.15 3.5 5.2	1,7 2,3 715 3.5 5.2	23 775 3.5 5.2	715 3.5 5.2	88 88 88	ibi izi				4.	e; 22	720 42		47	7,8						105	19	350	8		109 KS1	KST32MA
705 2.5 6.9 14.2 2.2 3.0 715 3.0 6.2	2.5 6.9 14.2 2.2 3.0 715 3.0 6.2	2.5 6.9 14.2 2.2 3.0 715 3.0 6.2	6.9 142 22 3.0 715 3.0 6.2	142 22 3.0 715 3.0 6.2	22 30 715 30 62	3.0 715 3.0 6.2	715 3.0 6.2	3.0 6.2	63 69		777	12.0	177	2.3	720 339		6.93	6						310	350	029	108	100	115 XS1	KS132MB
8 710 2.6 9.5 19.4 3.0 4.0 715 3.2 8.6	2.6 9.5 19.4 3.0 4.0 715 3.2	2.6 9.5 19.4 3.0 4.0 715 3.2	9.5 19,4 3.0 4.0 715 3.2	19,4 3.0 4.0 715 3.2	3.0 4.0 715 3.2	4.0 715 3.2	715 3.2	2		40		16.2	26	3.5	720 3.7		8.0	14.0						100	280	35.15	64		120 KS1	KS132MC
																								190	SF		167		200 KS1	KS160M
																								225	740		380	TECH	215 KS1	KST60L
																								235	1,170		424		250 KS1	KS180L1
727 3.6 19.5 20.0 6.8 9.1 728 4.2	36 195 200 6.8 9.7 728 4.2	36 195 200 6.8 9.7 728 4.2	195 20.0 6.8 9.1 728 4.2	20.0 6.8 9.1 728 4.2	6.8 9.1 728 4.2	91 728 4.2	728 4.2	4,2		.00	18.5	17.3	(F) (B)	8.4	730 4.5		19.0	16.3						235	11.00	4,000	424		250 KS1	KS180L2
																								255	2,170	25-7	\$5		370	KS200L1
10 722 3.7 27.4 25.0 9.4 12.6 725 4.1 26.0	3.7 27.4 25.0 9.4 12.6 725 4.1	3.7 27.4 25.0 9.4 12.6 725 4.1	27.4 25,0 9,4 12.6 725 4,1	26.0 9,4 12.6 725 4,1	9,4 12.6 728 4,1	12.6 725 4.1	728 41	7		569		22.0 8.	6	11.5	735 4.5		25.5 20	20,3						255	5 2.170	7.200	0 572		370 KS2	KS200L2
18 736 4.8 38.0 39.0 12.5 16.9 737 5.4 36.0	4.8 38.0 39.0 12.5 16.8 737 5.4	4.8 38.0 39.0 12.5 16.8 737 5.4	38.0 39.0 12.5 16.8 737 5.4	39.0 12.5 16.8 737 5.4	125 16.8 737 5.4	16.8 737 5.4	727	3		w		35.0	cy	15.2	739 6.0		35.0 31	91.4						220	4,020	8.000	989		Sto KS	KS225SA
736 4,7 444.0 35,7 14,0 18.8 738 5,5	4.7 44.0 35.7 14.0 18.8 738 5.5	4.7 44.0 35.7 14.0 18.8 738 5.5	44,0 35.7 14,0 18.8 738 5.5	35.7 14.0 18.8 738 5.5	14.0 18.8 738 5.5	18.8 738 5.5	738	55		- 0	40.0	31.0	8 2	172	739 6.0		6.0	38.5						270	4,380	8 600	56		525 K82	K5225B
																								27.5	4,630	(Ties	1045		550	KSSZSMA
7.0 725 4.6 51.5 45.5 18.0 24.0 736 4.9 48.5	4.6 51.5 45.5 18.0 24.0 736 4.9	4.6 51.5 45.5 18.0 24.0 736 4.9	51.5 45.5 18.0 24.0 736 4.9	45.5 18.0 24.0 736 4.9	18.0 24.0 736 4.9	24.0 736 4.9	736 4.9	9	_	ක		41:0 1	16.0	21.5	738 5.7	7 46.4		36.5						265	\$420	9.400	21112		. XS2	KS225MB
15 736 5.0 58.0 47.0 19.5 26.0 738 5.6 55.5	5.0 58.0 47.0 19.5 28.0 738 5.6	5.0 58.0 47.0 19.5 28.0 738 5.6	58.0 47.0 19.5 28.0 738 5.6	47.0 19.5 28.0 738 5.6	19.5 28.0 738 5.6	28.0 738 5.6	738	8.6		60		45.0	щ	23.67	738 6.2	2017	54.0	22.2						280	3 5.730	10.500	1332		98 20	KSS50SA
5 737 52 650 630 210 280 738 58 590	5.2 65.0 53.0 21.0 28.0 738 5.8	5.2 65.0 53.0 21.0 28.0 738 5.8	65,0 53.0 21.0 28.0 738 5.8	52.0 21.0 28.0 738 5.8	21.0 28.0 738 5.8	28.0 738 5.8	738	8		0.3		0.74	19.0	28.5	739 6,4		60.0	43.0						270	5.340	15.000	1498		88	KSSSOSB
																								330	0.630	.725	5651		700 KS2	KSSEOMA
.5 737 5.4 76.0 49.0 25.0 33.5 738 5.B 66.0	5.4 76.0 49.0 25.0 33.5 738 5.8	5.4 76.0 49.0 25.0 33.5 738 5.8	76.0 49.0 25.0 33.5 738 5.B	49.0 25.0 33.5 738 5.B	25.0 33.5 738 5.8	33.5 738 5.8	738	w W	_	0		22	23.0	31.0	739 6.4		98.0	7.04						355	7,430	16,000	7871 0		725 KS2	KS250MB
																								210	10.800		1816		98 88	KS280SA1

SUPPLY CONDITION 3 PHASE 415V +(~10%) 50 C/S +(~10%)

Table 8.4 (Contd.)

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

8 POLE

DUTY: S4 & S5, STAHTING CLASS 600 STAHTSH

KS280MA2 KS280SA2 Frame KS280MA1 KS3558B KS2BOMB KS280MB KS400LA KS400LB KS450LA KS450LB KS280SC KS315S2 KS315M2 KSSBOSB KS315M1 KS315S1 KSSESSA KSSSSM Ö KSBSSL Appro 4100 4300 1475 1475 3100 3350 1385 2120 2500 10201 1050 1075 1025 1090 1090 2000 2250 990 1385 8 15179 11984 (EN) POT 2102 2343 3114 888 3114 5615 1853 1853 2370 2343 2558 3885 3892 57.88 8289 9696 5007 8 Komp 28.700 90.000 101.00 20,000 20,000 25.600 26,000 56,000 76,000 82,000 21.500 25.600 38,000 50,700 76,000 28 ROTOR Kari 188.80 162.30 10,800 11,900 12,700 13,500 13,900 13,900 22,000 22 000 28.383 SE 30 51,500 67,283 78.000 90.100 2 232 330 370 415 λ 245 250 598 592 338 285 310 370 390 435 480 38 400 460 460 88 Æ 88 NOT FLC XFLT amps 24 53 CDF 100% SPEED E 3 WX FP či, 8 137.0 155.0 366.0 164.0 385,0 265,0 271,0 152.0 B 70.0 68.0 0.09 74.0 60.0 75.0 0.50 87.0 93.0 78.0 92.0 ÇT1 104.0 25,0 161.0 230.0 71.0 FLC 0.3 71.0 96.0 84.0 850 8 XFLT 4 7.0 5,2 17 9.4 5.8 8.4 8 52 53 8 89 7.8 7.0 74 60 10. CDF 60% SPEED E 742 743 743 745 745 746 746 9 743 742 743 34 3783 7 発 X 150.0 155.0 397.0 217.0 160.0 215.0 120.0 37.0 33.5 43.0 47.0 97.5 71.0 29.0 87.0 120.0 33.5 43.0 OUTPUT KW HP 40 115.0 110.0 27.5 35.0 430 65.0 900 90.0 25.0 320 8 98 25.0 32.0 4 310.0 171.0 153.0 0:08 99.0 0.55 277.0 159.0 74.0 68.0 65.0 82.0 93.0 166,0 101.0 257.0 206.0 0.67 AA (2) 234.0 1 109.0 129.0 183.0 2 вите 87.0 96,0 74.0 88.0 74.0 87.0 CH SPEED POT 6.6 80 4,8 (2) (4) 4,8 47 4 4.7 20 5.0 6 8 639 16 6.0 F CDF 40% 742 745 発 20 742 743 749 742 3 742 743 7 745 38 745 746 155.0 228.0 138.0 135.0 160,0 62.5 37.5 47.0 919 20 KW HP 37.5 40.0 47.0 78.4 86.0 cti 115.0 100.0 120.0 100.0 496,0 230.0 170.0 47.0 28:0 35.0 57.0 70.0 8,0 30.0 35.0 88.5 8,0 0 315,0 176.0 104.0 105.0 107.0 225.0 166.0 172.0 115.0 102.0 77.0 87.0 84.0 82.0 70.5 90.0 X. 100.0 138.0 187.0 276.0 240.0 289.0 FLC amps 170.0 91.0 0.06 76.0 90.0 76.0 ф SPEED POT ## 4.4 42 \$ #3 4.4 40 4.5 4.8 4.5 5,1 6.0 9 5.0 10 7.8 CDF 25% 343 745 745 9 745 742 742 742 差 ŧ Ξ Z ž ₹ 7 4 160,0 240,0 70.0 150.0 150.0 173.0 5.0 40.0 86.0 6 0.00 OUTPUT RW HP 40.0 44.0 51.0 56.0 Ö 120,0 180,0 110.0 110.0 130.0 38.0 520 64.0 74.0 30.0 33.0 30.0 38.0 42.0 68.0 cu KS280MA2 KS280SA2 KS280MA: Frame K83555B KS400LB KS450LA KS2BDMB KS280MB KS450LB KS280SB KS2B0SC KS315S2 KB345M1 KB315M2 KS355SA KS400LA KS31581 KS355M **KS355**L

DOC-RMPR-0010102

9 0	Service and the	Е	D POT	57	_	2000	г	-	-	ш					ŀ								Ī	-			2	000	FIRME
	KW HP	SPEED	XFLT	amps	¥.	28	TUTPUT EW HE	SPEED R	XFLT a	FLC amps	НА	OUTPUT KW HP	v 157	SPEED P	YELT P	FLC F	A A	OUTPUT KW HP		SPEED F	POT F	FLC	RA	동	ROTOR L	LOAD Kgm2		(Kg)	Size
-	es eu	4	2	ယ	1	.99	on.	10	ŧ	64	E E	14	15	92	17	18	65	8	22	22	23	24	55	56	27	83	62	83	31
KS226S 18	18.0 24.0	299	2.6	43.0	47.0	16,7	22.4	188	60	40.0	44.0	15.0	0.00	282	. F	36.5	39.0	1.5	15.5	989	4.0	34.0	30,00	230 #	4,000		748	10	KS2258
KS225M 23	23.5 31.5	88	69	57.0	900	22.0	20.5	188	58	540 4	48.5	19.5	26.0	282	EN EN	50.0	413	× 050	000	586	4.1	46.0	32.0	285 5	5.100		1001	98	KS225M
KS250SA 26	26.0 35.0	585	25	61.0	220	23.0	31.0	584	828	56.0	48.5	2000	27.0	588	3.2	52.0 4	42.0	18.5 22	22.0	285	3.9	48.0	34.0	285 5	9.700		1045	520	KS2505A
KS250SB 28	28.5 38.2	2862	2	67.0	44.5	25.0	33.5	584	330	62.0	43.5	21.5	0.00	585	167 197	57.0 3	37.3	18.0 24	24.0	283	4.2	53.5	0.15	350	6,300		1228	3	KS250SB
KS250M 32	32.0 43.0	585	5	74.0	65.0	28,5	38.2	28	52	69.0	49,0	24.5	33.0	588	3.4	63.6	200 25	20.02	27.0	587	4.0 \$	58.0	35.5	360 6	6,600		1300	67.9	KSSSOM
KS280SA 48	48.0 84.0	583	2.4	105.0	134.0	40:0	53.5	385	2.8	94.0 112.0	-	32.0	43.0	282	3.5 8	82.0 9	90.0	27.0 36	36.0	280	15	76.0 7	78.0	215 10	10.500		1789	986	KSSBOSA
KS280SB 55	55.0 75.0	583	2.5	119.0	130.0	46.0	61.5	585	66	106.0 253.0	- 11	38.0	61.0	2867	3.5	95.0	92.0	32.0 4	43.0	069	4	98.0	77.0 2	250 12	12.300		2120	1020	KS280SB
KS280MA 60	0.08 0.09	88	5	130,0	138.0	50.0	67.0	585	28	114.0 113.0		42.0	98.0	289	33	108.0	95.0	35.0 4	47.0	089	4.0	95.0	2007	285 13	13.500		2263	1075	KSSBOMA
KS280MB 65	0.78 0.28	583	25	144.0	144,0 128.0	92.0	76.4	585	53	132.0 112.0		46.5	62.0	283	3.5	118.0	91.0	40.0	53.5	069	4.1	108.0	79.0 3	305 14	14.800		2651	1120	KS2BOMB
KS315SA 70.0	0.00	588	2.9	148.0	148.0 100.0	0.08	0.08	888	3.4	135.0 94.0		25.0 7	0.07	989	3.9	124.0 8	82.0 4	44.0 58	59.0	205	4.6 11	115.0 7	70.0	380 22	22.000		2693	1385	KS315SA
K8315SA 70	70.0 94.0	585	Ŕ	144.0	140.0	60.0	90.0	885	2	130,0 120,0	_	52.0 7	70.0	069	3.6	118,0 10	105,0 4	44.0 52	0.65	269	4.2 +	109.0	88.0	305	22.000		2693	1385	KS315SA
KS3155B 78.0	£0 104.5	5 585	2.7	165.0	165.0 138.0	0.70	90.0	88	25	152.0 120.0	-	56.0 7	76.0	066	3.8	137.0 10	100.0	50.0	0.79	285	4.2	128.0 8	89.0	340 25	25.200		3221	1450	KS315SB
KS315M1 87.0	7.0 116.7	7 585	2.7	188.0	188.0 142.0	75.0	100.0	889	3.1	162.0 123.0	-33	65.0	87.0	980	3,6	150.0 10	107.0	55.0 73	75.0	585	4.2 13	138.0	90.0	370 27	27.700		3544	1480	KS315M1
KS315M2 87.0	116.7	288	to ex	180.0	142.0	75.0	100.0	288	5	162.0 123.0		65.0	67.0	069	3.6	150,0 10	107.0	55,0 78	75.0	289	42	138.0	0.00	370 27	27.700		35	1480	KS315M2
KS3558A 102	102.0 137.0	585	2.5	200.0	200.0 192.0	88.0	117.9	288	56	177.0 166.0	-	76.0	102.0	066	3,4 16	160.0	143.0 8	82.0 8	0.78	591	4.0 14	145.0 12	123.0	350 36	39.500		4195	2000	KS3558A
KS3555B 115	115.0 155.0	288	5.8	225.0	225.0 188.0	100.0	135,0	888	3.0	202.0 164.0	- 33	1 0.38	114.0	280	3.5	181,0 13	139.0 7	73.0 %	0.86	581	4.1 16	168.0 1	122.0 3	37.0 45	45.600		4829	2100	KS355SB
KS355MA 115,0	5.0 155.0	285	2.6	225.0	188.0	100.0	135.0	288	3.0	202.0 154.0		1 0.38	114.0	280	3,5	181.0	139.0	73.0 86	38.0	281	4.1	168.0	122.0 3	370 48	45.500		4829	2280	KSSSSWA
KS365MB 145.0	5.0 195.0	0 585	25	276.0	276.0 210.0	125.0	168.0	588	53	244.0 181.0		108.0	145.0	2 069	3.4 22	220,0 156.0		92.0 12	123.5	165	4,0 15	196.0 1:	133.0 4	420 51	51.600		5937	2300	KS355MB
KS355LA 146	145.0 195.0	999	2.5	276.0	276.0 210.0	125.0	168.0	888	2.9	244.0 181.0	133	108.0	145.0	280	3.4 22	220.0 15	156.0 9	92:0 12	123.5	165	4.0 15	198.0	133.0 4	420 51	51.600		5937	2340	KS355LA
KS355LB 180.0	0.0 240.0	0 568	2.7	345.0	345.0 310.0	160.0	215.0	269	3.0	310.0 278.0		135.0 1	180.0	285	3.6 27	274.0 23	235.0 11	115,0 15	155.0	593	4,2 34	248.0 2	200.0	350 67	67,000		7766	2550	KS365LB
KS400LA 180	180.0 240.0	988	2.0	347.0	347.0 267.0	160.0	215.0	985	я	312.0 237.0	27.00	135.0	180.0	205	3.9 27	278.0 200.0	21	115.0 15	155.0	200	4.3 29	254.0 171.0	200	410 86	65.000		7052	3000	KS400LA
KS400LB 230	230.0 310.0	988	2.7	429.0	429.0 297.0	200.0	268.0	989	2	378.0 256.0	340	170.0 2	228.0	105	3.7 32	336.0 21	218.0 14	145.0 19	195.0	285	4.2 30	303.0 186.0	-	475 86	99.100		9000	3300	KS400LB
KS450LA 300	300.0 400.0	686	25	538,0	538.0 444.0	256.0	335.0	165	3.0	471.0 371.0	11515	210.0	285.0	285	3.5 40	408.0 31	312.0 18	180.0 24	240.0	593	4.1	367.0 29	\$67.0	410 16	162.80		11867	4000	KS450LA
KS450LB 380	380.0 510.0	686	2.4	686.0	680.0 514.0	320.0	430.0	185	3.0	592.0 408.0	6075	280.0 3	350.0	285	3.5 50	503,0 30	334.0 23	220.0 29	295.0	583	4.1	449.0 263.0		475 18	183.60		14504	4400	KS450LB
KSS00E 450	450.0 600.0	069	2.7	832.0	832.0 592.0	380.0	510.0	166	17	726.0 505.0		320.0 4	430.0	283	3.6 84	948.0 42	425.0 27	270.0 38	360.0	989	4.4	584.0 3	361.0	488 27	271.00		19039	8400	XSS00L
KSS00LX 475	475,0 635,0	550	8	980,0	880,0 635.0	425.0	570.0	166	5.6	780.0 570.0	11/2	360,0	480.0	283	3.6	729.0 48	480.0 31	310,0 41	415,0	595	4.0 52	520.0 4	415.0 4	460	332.00		20277	0065	KSSOOLX
KS560LX 950	950,0 1275,0	25.0	25		1115.0	1710:01115:0 860:0	1150.0	989	2.8	1650.01010.0		740.0 9	0.066	999	3.2	1450,0 870,0	-	650.0 670.0		269	3,7 13	1300.0 765.0	_	27 009	740.00		38630	10000	KSS60LX

SHADED OUTPUTS AS PEH IPSS

• Upto trame size 315, For frame sizes above 315 the applicable amblent temp, will be 40%

DOC-RMPP-0010102

SUPPLY CONDITION 3 PHASE 415V +/-10% 50 C/S +/-3% AMBIENT TEMP, 45/C*

Table 10.2

DUTY: S4 & S5, STARTING CLASS 150 STARTS/Hr

10 POLE SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

											_		1			-						1							_
Fraction	Stre	31	KS2255	KS225M	KS250SA	KS250SB	KSSSOM	KS280SA	KS280SB	KSZSOMA	KS280MB	KS315SA	KS315SA	KS315S9	KS315M1	KS315M2	KS355SA	KS365SB	KSSSSMA	KS355MB	KS355LA	KS355LB	KS400LA	KS460LB	KS450LA	KS450LB	KS500L	KSSOOLX	KSSSOLX
Achie	(Kg) ₩	30	515	250	620	940	679	96	1020	1075	1120	1385	1385	1450	1480	1450	2000	2100	2200	2300	2340	2550	3000	3300	4000	4400	5400	5900	10000
Č	E E	83	749	1001	1045	1228	1300	1789	2120	2263	2651	2693	5692	323	3544	354	4188	4629	4829	5937	5937	2977	7952	9800	11867	14504	19038	20277	386.30
-	LOAD Kgm2	28	16,000	17.000	23.000	24.890	27.000	31,880	36,000	43.000	46.000	39.900	52,800	60,000	36.900	44.000	77,000	104.00	104.00	130.00	130.00	178.00	160.00	192.00	216.00	244.00	280.00	340.00	300,000
GD2	ROTOR Kgm2	27	4.000	5,100	5.700	8.300	6,800	10.500	12,300	13.500	14.800	22.000	22,000	25.200	27.700	27,700	39.500	45.600	45,500	51.500	51,600	000'29	95.000	99.100	162.80	183,60	271.00	332.00	740.00
-		:83	230	285	265	350	350	215	550	255	306	380 2	305 2	340	370 2	370	320	370 4	370 4	420 5	420 5	350 6	410 8	475 9	410 1	475 1	465 2	99	2009
	RA	25	55.5	28.0	28.5	27.0	295	96.0	68.0	680	67.0	**	74.0	75.0		2,77	0.50	98.0		108.0	-	150.0	100.41	316	208.0	219,0			
-	FLC amps	24	33.0	44.5	45.5	91.0	25.0	72.5	94.0	0.08	105.0		102.0	121.0		123.0	127.0	152.0		178.0		207.0			314.0 2	391,0	516.0 241.0	570,0 361.0	1200.0 650.0
繿	POT XFLT	83	9,	9	4.6	6.4	4	17	5	5	4.8		9.0	23		5,2	2.0	10		4.9		8.5			60	en un	9.9	4.6	4.
CDF 100%	SPEED	22	88	288	589	585	589	583	686	989	990		888	593		253	593	592		269		969			969	969	596	989	1/68
300		12	35	17.7	18.8	21.0	23.1	31.5	37.5	0.09	46.0		50,05	999		62.5	97.0	80.0		100.0		114.0			188.0	228.0	285.0	360.0	750.0
	OUTPUT KW HP	20	10.0	80	14.0	3.5	17.0	23.5	28.0	30.0	25.0		37.0	42.0		47.0	50.0	0.09		25.0		85.0			140.0	170.0	210.0	0.075	550.0
	ЯА	19	30.0	32.0	340	31.0	100	76.0	0'22	0.62	28.0	20.0	98.0	99.0	90.0	90.0	129.0	122.0	122.0	133.0	133.0	200.0	0.171	188.0	267.0	283.0	361.0		_
	FLC	33	34.0	46.0	48.0	53.5	0	36.0	88.0	93.0	110.0	115.0	109.0	128.0	138.0	138.0	146.0	168.0	168.0	188.0	188.0	248.0 2	254.0 1	303.0	367.0 2	449.0	584.0	620.0 415.0	1300.0 755.0
e.	POT	13	63	4	88	4.2	4.0	5	2	40	4	4.6	4.2	4.2	3	5	4.0	17	4.1	4.0	4.0	4.2	43	43	÷	.4	2	4.0	13
CDF 60%	SPEED	φ	98	288	285	283	299	289	85	E	88	585	285	28	285	265	85	980	55	590	HIS.	583	553	595	593	8	88	505	989
		15	15.5	20.0	22.0	24,0	27.0	36.0	43.0	47.0	53.5	20.0	59.0	0729	75.0	0.67	0.88	0.86	98.0	123.5	123.5	155.0	155.0	195.0	240.0	88	350.0	415.0	870.0
	OUTPUT KW HP	7	11.5	15.0	6.5	18.0	80.0	0.73	32.0	35.0	40.0	44.0	0.4	0.0	95.0	55.0	0.38	73.0	73.8	0.26	92.0	115,0	115.0	145.0	180.0	220.0	270.0	310.0	650.0
	HA.	5	39.0	39.2	42.0	38.0	£4	90.0	92.0	95.0	95.0	79.0	0.50	080	0770	0.90	9009	43.0	36.0	20	52.0	35.0	95.0	-5317	-				
	FLC	cz.	38.5	48.5	9550	58,0	62.5	85.0	0.39	103.0	119.0	120.0	123.0 109.0	140.0 106.0	146.0 102.0	152.0 109.0	188.0 150.0	167:0 143:0	183.0 135.0	224.0 162.0	216.0 152.0	274.0 235.0	270.0 192.0	330.0 210.0	416.0 319.0	512.0 341.0	648.0 427.0	729.0 480.0	32 1450,0870.0
r.	POT	Œ	65	34	3.2	3.5	10	3.5	3.5	2	(r)	4.0	3.5	316	3.8	9	32	3.4	3.5	3.3	3.5	3.6	4.0	38	3.4	25	6	3.4	3.2
CDF 40%	SPEED	10	8	34	服	5885	188	188	282	287	193	200	585	8	065	8	8	980	285	680	595	595	265	595	565	St	250	569	18
		d)	20.0	25,0	27.0	88,65	32.0	43.0	51,0	0'99	62.5	07.9	72.5	0.09	83.0	88.0	107.0	17.0	112.0	151.0	140.8	180.0	173.0	221.0	288.0	355.0	430.0	480.0	980
	KW HP	ω	15.0	18.5	50.0	820	24.0	32.0	38.0	420	47.0	20.0	22	009	62.0	0.96	80.0	88.0	83.0	112.0	105.0	135,0	130.0	165.0	215,0	265.0	320.0	360.0	240,0
	RA	1	43.5	999	50.5	45.2	49.8	108.0	253.0	113.0	1120	98.0	120.0	124.0	115.0	126.0	180.0	175.0	152.0	196.0		_	214.0						1650,01010.0 740,0
	FLC amps	ф	38.5	25	67.0	53.5	70.0	0.06	106.0	114.0	132.0	130.0	130.0	153.0	158.0 115.0	166.0	189.0	213.0 175.0	197,0 152.0	260,0	238.0 169.0	316,0 285,0	290.0	358.0 235.0	474.0 386.0	595,0 418.0	744.0 520.0	780.0 570.0	1650.00
₽.	POT XFLT	us	88	80	2.7	3.0	8	3.0	128	8	60	3.6	ë	3.0	3.3	53	2	28	27	2.8	3.2	53	3.6	3.4	29	r.	tr)	50	28
CDF 25%	SPEED	4	每	58	283	88	583	585	588	288	588	289	288	88	586	1985	98	587	285	587	165	969	201	165	955	28	555	166	966
	5	ო	22.0	20.5	32.0	35.0	38.8	51.0	61.0	67.0	76.4	76.0	80.0	94.0	94.0	169.0	127.0	144.0	125.0	180.0	156.8	221.0	195.8	250.0	350.0	435.0	525.0	570.0	1150.0
	OUTPUT KW HP	cu	60 CO	22.0	24.0	28.0	80	38.0	46.0	920	57.0	56.0	0.09	250	70.0	0'11	95.0	107.0	93.0	135,0	117.0	165.0	146,0	185.0	269.0	1125.0	390.0	425.0	B60.0
	Size	¥	KS225S	KS22SW	KSSSOSA	KSSSOSB	KS250M	KSSBOSA	KS280SB	KS280MA	KS290MB	KS315SA	KSS15SA	KS315SB	KS315M1	KSS15MZ	KS355SA	KS355SB	KS355MA	KSSSSMB	KS355LA	KSSSELB	KS400LA	KS400LB	KS450LA	KS450LB	KSSDOL	KSSOOLX	KSSGOLX

SHADED CUTPUTS AS PER IPSS

• Upto frame size 315. For frame sizes above 315 the applicable ambient temp. will be 40%.

100

DOC-RMPP-0010102

SUPPLY CONDITION 3 PHASE 415V 4/-10%. 50 C/S +1-3% AMBIENT TEMP, 45)C*

Table 10.3

SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

10 POLE

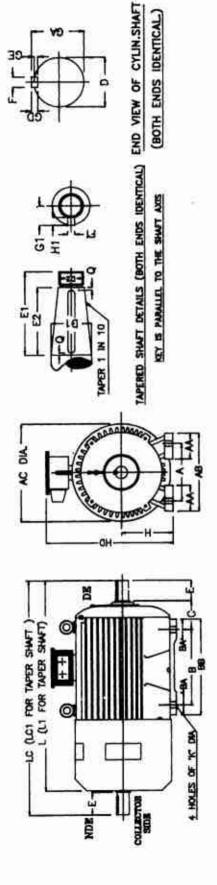
DUTY: S4 & S5, STARTING CLASS 300 STARTS/Hr

SHADED OUTPUTS AS PER IPSS

• Upto frame size 315. For frame sizes above 315 the applicable ambient temp, will be 40%.

DOC-RMPP-DO10102

SUPPLY CONDITION 3 PHASE 415V +I-10% 50 C/S +I-3% AMBIENT TEMP, 45/C*

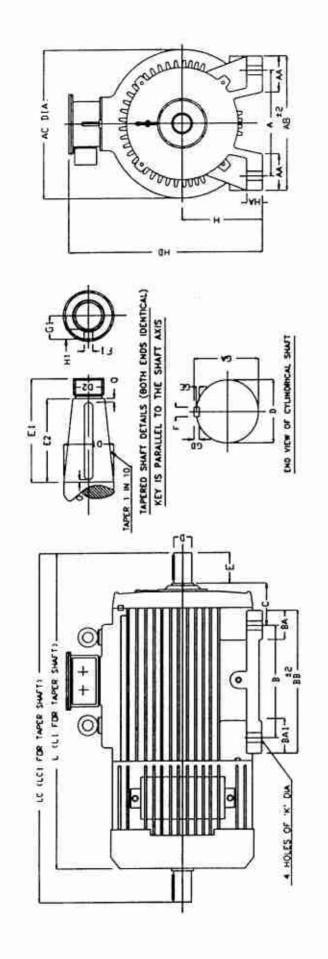

Table 10.4

10 POLE SLIPRING CRANE DUTY MOTORS-PERFORMANCE FIGURES

DUTY: S4 & S5, STARTING CLASS 600 STARTS/Hr

					- 5	23.7%		B	75	123	Y250			5		200	U)		23	722									
Frame	Stre	9	KS2255	KS225M	KS250SA	KS25059	KS250M	KS280SA	KS280SB	KS2B0MA	KS280MB	KS315SA	KS315SA	KS315SB	KS315MH	KS315M2	KS355SA	KS3858B	KSSSSMA	KSSSSMB	KSSESLA	KS355LB	KS400LA	KS400LB	KS450LA	K8450LB	KSSOOL	KSSOULX	KSSBOLX
Annen	<u>(</u> X <u>M</u> <u>(</u> S	30	515	550	620	640	676	056	1020	1075	1120	1388	1385	1450	1480	1480	2000	2100	2200	2300	2390	2550	3000	3300	4000	4400	5400	9069	10000
100	E E	83	749	1001	1045	1228	1300	1789	2120	2263	2651	2693	2693	3221	3544	3544	# 198	4629	628	5837	2888	7788	7967	5803	11867	14504	19039	20277	38630
0023	LOAD Kgm2	28	10.700	11,330	15.300	16.500	18.000	21,200	24.000	28.700	32,000		35.200	22.000		44,000	47,250	49.300		88,700		118,70			140.00	175.00	200,005	220,00	300.00
GD2	ROTOR Kgm2	27	4,000	5,100	5,700	6,300	6.800	10,500	12.300	13.500	14.8	22 000	22.000	25.200	27,700	27,700	39,500	45.800	45.600.	51,600	51.600	900 29	85,000	99.100	162.80	183.60	271.00	332.00	740.00
		82	230	585	285	350	350	215	250 1	265 1	306	380 2	305. 2	340	370 2	370 2	320	370	370 4	420 5	420 5	350	410 8	475 9	410.1	475 1	455	460	500
	RA	55	(/88)		3664.1	1997	99.	599	199		(646)	1999	277	600	1.896	.0995	(62)	29.3	209	31.	: TE	(60)	30.	340		34:	. 75.	-75-6	(99)
-	FLC F	24																											
15		R																											\neg
CDF 100%	SPEED POT rpm XFLT	22																											
(See)		12																											
	OUTPUT KW HP	20																											
	HA T	19	22.5	25.3	25.4	23.5	8.85	299	58.3	59.0	59.0		46.0	0.09		61.0	87.0	75.5		840		0.4			9.0	0	20	3.0	98.0
1	FLC F	<u>a</u>	9.0	43.0 2	43.6	49.0	53.6	69:0	90.08	86.3	101.0		101.0	103.0		126.0 6	128.0	135.0 7		152.0 8		7.5 190.0 114.0			288.0 148.0	352.0 154.0	471.0 188.0	540,0 213.0	900,0 355.0
	POT F	13	5.3	5.1	5.4	52	9.5	5.3	69	64	53		12	53		4.9	107	8.8		23		7.0			7.0	7.1 3	44	7.6	7.9 9
CDF 60%	SPEED F	92	289	55	592	26	200	285	583	989	593		583	988		969	8	88		596		986			288	285	260	269	280
- 5		15	1 5	0.9	16.0	18.0	20.1	27.0	32.0	35.0	40.0		40.0	45.0		50.0	61.5	5.0		78.0		87.0			135.0	180.0	188.0	215.0	400.0
	OUTPUT KW HP	7	8.5	12.0	12.0	3.5	0.51	20.0	24.0	28.0	30.0		30.0	34.0		37.5	46.0	46.0		0.88		65.0			10000	120,0	140.0	150.0	300,0
	HA HA	5	95.0	29,7	58.6	27.0	29.5	63.2	66.7	65.7	65.0		68.0	68.0		73.0	-	85.0		96,0									
	FLC	Č.	32.0	45.3	45,7	0.62	55.4	77.6	83.0	89.4	9		98.0	117.0		123.0	134.0 98.0	140.0		160.0		197.0 127.0			269.0 163.0	371.0 179.0	467.0 215.0	530,0 233.0	945.0 415.0
.0	POT	Œ	4.7	4	40	9	d Di	17	4.5	9.9	87		6	5.5		Ž.	0	52		5.5		9			63	13	7.4	2.0	67
CDF 40%	SPEED	10	589	8	989	65	56	25	265	<u>St</u>	55		N.	55		28	盟	58		95		100			965	969	285	986	ES.
		ch ch	12.7	8.8	18,8	23,0	23.0	30.0	37.0	38.8	40.0		46.0	55.0		0.03	20,0	70.0		88.0		8.8			150.0	188.0	215.0	235.0	470.0
	OUTPUT KW HP	ω	e:	14.0	46	15.5	17.0	525	57.5	0.83	33.0		98	38.0		40	923	52.0		0.59		72.0			110.0	140.0	160,0	175,0	350.0
-	AA A	1	97.6	31.8	31.7	29.5	34.4	70.2	72.7	74.6	75.0		72.0	75.0		78,0	0.80	83.0		0.00		320							175.0
	FLC amps	ф	33.0	64 64	1.9	4	58.5	74.2	86.0	83.3	109.0		190.0	121:0		28.0	139,0 108.0	144.0		170.0 100.0		205,0 132.0			307.0 177.0	362.0 192.0	602,0 360,0	630,0 240.0	960,0 475,0 350,0
8	YPOT XFLT	us	2	4	2	#	27	2	¥	7	ş		2.0	8		25	7	4		24		2			5.8	57	7	40 10	6.9
CDF 25%	SPEED	4	588	288	588	665	290	591	165	591	25 25 25		594	594		594	4	594		504		595			988	966	595	966	597
	Tara swift	œ	0 #	20.0	20.0	233.0	27.0	33.3	40.0	44.0	51.0		48.0	56.0		61.5	48.4	76.4		94.0		100.0			160:0	200.0	228.0	240.0	540.0
	OUTPUT KW HP	cv	10.5	15.0	15.0	17.0	0.05	25.0	30.0	33.0	88		38.0	45.0		46.0	0.72	97.0		70.0		13.0			120.0	150.0	170.0	180,0	400,0
1	Size	¥	KS225S	KS225M	KS2505A	KS2508B	KS250M	XS280SA	KS280SE	KSSBOMA	KS2BOMB	KS3155A	KS3158A	KS315SB	KS315M1	KSSISMZ	KS356SA	KS355SB	KS355MA	KS355MB	KSSSSIA	KS355LB	KS400LA	KS400LB	KS450LK	KS450LB	KS500L	KS500LX	KSS60LX

DOC-RMPR-0010102

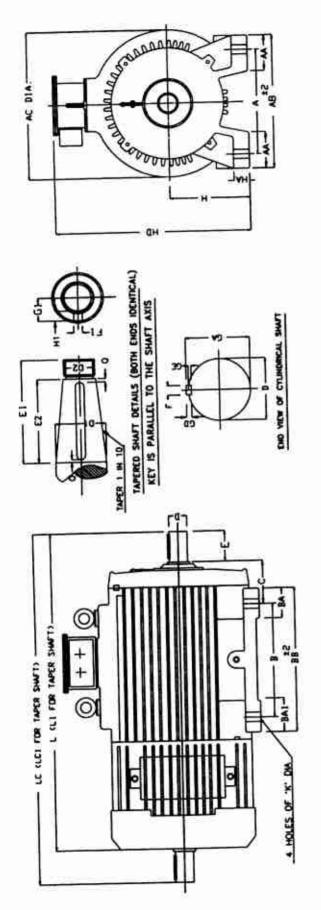


STANDARD DIMENSIONS CONFORMS TO IS1231-1974 & IPSS SPEC.

All dimensions are in m.m.

		I	ш	IXING DIN	MENSIONS	S	AC					
FRAME	NOM.	TOL	A	6	ပ	¥	DIA	모	ΑA	AB	BA	88
KS112M	112	-0.5	190	140	70	12	252	325	45	226	20	170
(S132M	132	-0.5	216	178	89	12	300	372	55	260	25	220
KS160M	160	-0.5	254	210	108	15	346	445	55	305	75	260
KS160L	160	-0.5	254	254	108	15	346	445	55	305	78	305

		o	ღ	2	5	2	DOC-RMPP-0010102
	S)	Ē	27.9	20	22	22	C-RMPF
	H END	Ξ	ilk)	7	8	ထ	Ď
	S (BOT	Œ	2	8	10	10	
	ETAILS	E2	42	54	82	82	
	OND	ш	9	80	110	110	
	TAPER SHAFT DIMENSION DETAILS (BOTH ENDS)	D2	T 28 M16X1.5 60	T 38 M20X1.5 80	T 42 M24X2	T 42 M24X2 110	
	SHAFT	5	T 28	T 38	T 42	T 42	
	TAPER	10	675	785	894	938	
		-	610	700	780	824	
	ш	TOL.	+.2	+.2	+.2	4	
S)	GE	NOM.	4	2	5	2	12
(BOTH ENDS)	0	NOM. TOL. NOM. TOL.	090	060'-	090	060	ęv.
; (BOT	GD	NOM.	2	00	80	œ	
ETAILS			036	036	043	043	
SION D	ш.	NOM. TOL.	့ထ	10	12	5	
IMEN	g		31	41	45	45	
CYLINDRICAL SHAFT DIMENSION DETAILS	۵	70L	+.018	+.018	+.018	+.018	
RICAL		NOM.	28	38	42	42	
YLIND	ш		09	80	110	110	
Ó	ပ္		675	785	894	938	
	٦		610	700	780	824	
	FRAME		KS112M	KS132M	KS160M	KS160L	

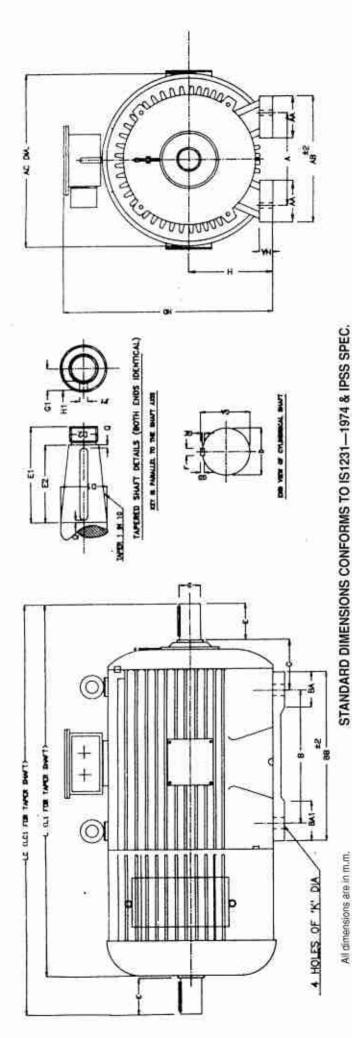


All dimensions are in m.m.

STANDARD DIMENSIONS CONFORMS TO IS1231-1974 & IPSS SPEC.

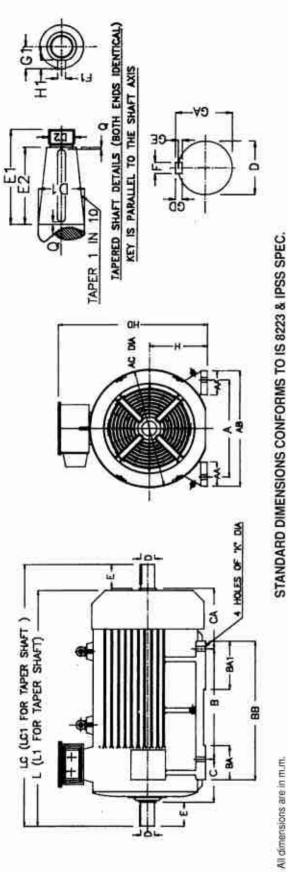
	T	u	XING DIN	VENSION	S		AC	모				BA	BA1
FRAME NOM.	TOL.	Α	В	၁	¥	НА	DIA	(Max.)	AB	AA	88	(Min.)	(Min.)
(S180L 180	-0.5	279	279	121	15	21	395	490	340	7.5	340	85	85
(S200L 200	-0.5	318	305	133	19	25	450	545	400	89	365	95	92

		O	YLIND	HICAL	CYLINDRICAL SHAFT DIMENSION DETAILS	DIMEN	SION	ETAILS	-	BOTH ENDS)	S)											
FRAME	٦	CC	ш		۵	GA	4		G	٥	GE	ы		TAPER	SHAF	TAPER SHAFT DIMENSION DETAILS (BOTH ENDS)	SION	DETAIL.	S (BOT	TH END	S)	
	(Max.)			NOM.	TOL.		NOM. TOL.	TOL	NOM.	NOM, TOL. NOM. TOL. L1 (Max.)	NOM.	TOL.	[] (Nex.)	5	ā	D2	ш	E2	Ξ	Ξ	55	o
KS180L	880	066	110	48	+.030	51.5	14	14 -0.052	o	-0.011	5.5	+0.2	880	066	T 48	T 48 M30X2	110	82	12	ထ	25	2
KS200L	947	1057	110	55	+.030	59	16	-0.052	10	10 -0.011	9	+0.2	+0.2 947 1057 T 55	1057	T 55	M36X3 1-	110	82	44	ගා	53	2
										PA.	55									ă	3C-RMPP	-0010102



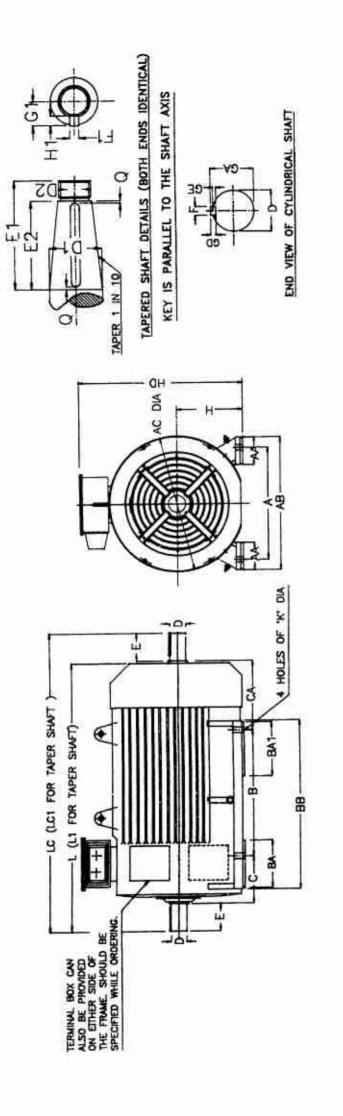
All dimensions are in m.m.

STANDARD DIMENSIONS CONFORMS TO IS1231-1974 & IPSS SPEC.


		I	ш	NG DNIXI	MENSION	S		AC	모				BA	BA1
FRAME	NOM.	TOL.	A	В	ပ	¥	H	DIA	(Max.)	AB	AA	88	(Min.)	(Min.)
(\$2255	225	-0.5	356	286	149	19	27	200	635	457	108	345	108	108
KS225M	225	-0.5	356	311	149	19	27	200	635	457	108	370	108	108
(S250S	250	-0.5	406	311	168	24	30	200	099	483	108	382	115	115
MOSS	250	-0.5	406	349	168	24	30	200	999	483	108	420	115	115

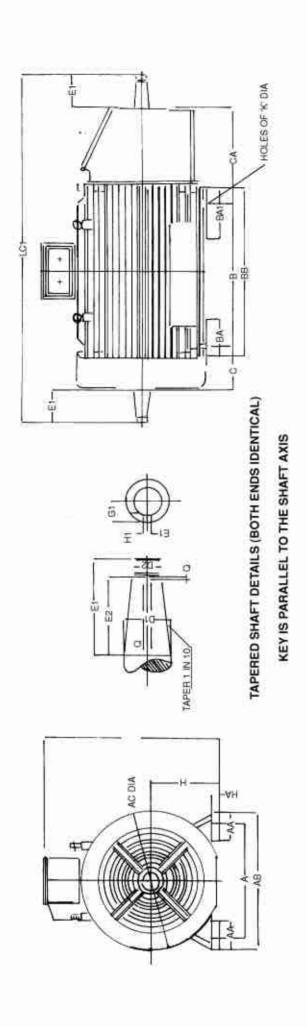
		ပ်	(LIND	RICAL	CYLINDRICAL SHAFT DIMENSION DETAILS	IMEN	SION	STAILS		(BOTH ENDS)	(S)											
	_	S	ш		0	GA	_		9	GD	GE	ш	*inic	RAPER	SHAF	TAPER SHAFT DIMENSION DETAILS (BOTH ENDS)	SION	ETAIL:	S (BOT	HENC	(S)	
€.	Max.)			NOM.	TOL		NOM.	TOL	NOM	NOM. TOL. NOM. TOL. L1 (NS.) LC1	NOM	TOL.	日圖	5	5	D2	ш	E2	Ŧ	Ξ	9	O
	1053	1194	140	99	+.030	64	18	052	F	11011	7	+,2	1053	1053 1194	T 60	T 60 M42X3 140	140	105	16	10	31.4	S
KS225M 1	1077 1218	1218	140	09	+.030	64	80	052	Ŧ	11011	7	+2	1077	1218	T 60	1077 1218 T 60 M42X3 140	140	105	16	10	31.4	5
. 17	1117 1256		140	99	+.030	69	8	-,052	F	-:011	7	4,2	1117	1256	T 70	+.2 1117 1256 T 70 M48X3 140	140	105	48	F	36.4	2
KS250M 1	1155 1294		140	93	+.030	69	18	052	Ŧ	11011	7	+2	+.2 1155	1294	T 70	1294 T 70 M48X3 140	140	105	18	F	36.4	5
										-	23										DCC_RMPP-0010102	-001010

	1000	I	ш	FIXING DIN	MENSION	S		AC	유				BA	BA1
FRAME	NOM.	TOL.	¥	ш	O	¥	H	DIA	(Max.)	AB	ΑA	98	(Min.)	(Min.)
KS280S	280	т	457	368	190	54	32	260	830	260	112	490	120	120
KS280M	280	т	457	419	190	24	32	260	830	260	112	490	120	120
(S315S	315	٦	208	406	216	28	36	620	885	620	120	520	143	143
KS315M	315	٦	508	457	216	28	36	620	882	620	120	520	143	143


		O	YLINE	BICAL	CYLINDRICAL SHAFT DIMENSION DETAILS	DIMEN	SION	ETAILS	\$ (BOT	(BOTH ENDS)	(2)											
FRAME	ب	S	ш		D	GA	ш	NI.	GD	D	S	GE		TAPER	SHAF	TAPER SHAFT DIMENSION DETAILS (BOTH ENDS)	SION	DETAIL	S (BOT	TH EN	(S)	
	(Max.)			NOM.	TOL.		NOM. TOL.		NOW.	TOL.	NOW.	TOL.	NOM. TOL. NOM. TOL. L1 (Max) LC1	EG.	5	D2	ш	E2	ű.	Ξ	5	o
KS280S	1300	1300 1428	140	75	+.030	79.5	20	052	12	12011	7.5	+.2	1330	1488	1330 1488 T 80	M56X4 170	170	130	50	12	41.3	5
KS280M	1300	1300 1428 140	140	75	+.030	79.5	20	-,052	12	011	7.5	+.2	1330	1488	T 80	1330 1488 T 80 M56X4 170	170	130	20	12	41.3	S
KS315S	1425	1425 1602	170	80	+.030	85	22	052	14	14011	6	+.2	1425	1602	T 90	1425 1602 T 90 M64X4 170	170	130	22	14	46.7	co.
KS315M 1425	1425	1602	170	80	+.030	82	22	052	14	011	6	+.2	1425	1602	1425 1602 T 90	M64X4 170	170	130	22	14	46.7	c)
										3,46	24									La .	DOC-RMPR-0010102	1-0010102

;	۲	ť	١
Ļ	۰	,	
	ı)	۱
	2	Ė	Ć
ď	-	5	i
2	ä	_	ì
C	1	7	ı
ī	2	•	1
L	1	Ц	ŀ
	5	į	ŀ
	Ξ	=	ŀ
E		3	ļ
ŕ		١	i
7	ī	1	١
		;	١
		Į	٠
		2	ļ
i	¢		į
4	¢	ĺ	
ŀ		•	
ζ	Į	2	ļ
	т		
	E		
	т		

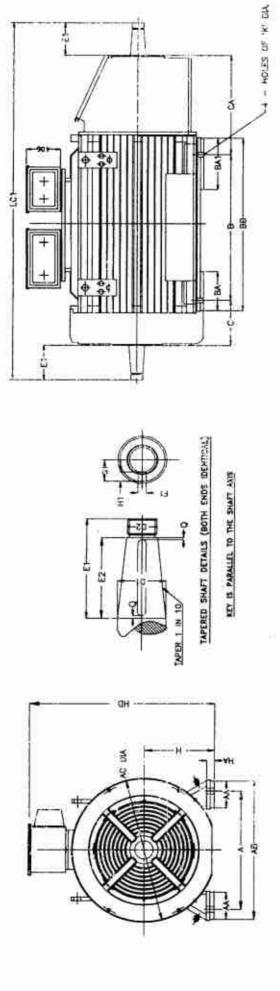
		I	u.	FIXING DIN	MENSION	S		AC						
FRAME	NOM.	TOL	٧	В	ပ	CA	×	DIA	모	AA	AB	BA	BA1	88
KS355S	355	7	610	200	254	631	28	760	1025	152	710	200	300	770
KS355M	355	7	610	260	254	631	28	760	1025	152	710	200	300	830
YS355L	355	Ŧ	610	630	254	631	28	760	1025	152	710	200	300	900
KS 400L	400	٦	989	710	280	615	35	850	1068	180	812	200	400	1005
KS450L	450	٦	750	006	315	670	35	960	1215	180	876	200	400	1223


Z	JDRIC	CYLINDRICAL SHAFT DIMENSION DETAILS	DIMEN	SION	ETAILS		(BOTH ENDS)	S)											
L		۵	GA	-		GD	٥	39	w		TAPER	SHAF	TAPER SHAFT DIMENSION DETAILS (BOTH ENDS)	SION	ETAIL	S (BOT	HENE	S)	ľ
_	Ŝ	NOM. TOL.		NOM.	TOL.	NOM.	NOM. TOL. NOM.	NOM.	TOL.	5	5	5	D2	됴	E2	Ξ	Ξ	5	Ø
170	90	0 +.035	95	52	052	44	110	6	-,2	1585	1805	100	M72X4	210	165	52	4	50.9	2
170	8	0 +.035	92	52	052	14	110	6	-7	1645	1865	100	M72X4	210	165	25	14	50.9	5
	170 90	0 +.035	95	25	052	14	110	6	2	1715 1935	1935	100	M72X4 210	210	165	25	4	50.9	S
0	210 100	00 +.035 +.013	105	25	052	14	110	o	2.2	1805	2025	110	M80X4	210	165	25	4	55.9	5
0	210 11	110 +.035 +.013	116	28	052	16	110	တ	2	2080	2305	118	M80X4	210	165	28	16	61.9	5
							100	25									0	DOC-RMPR-0010102	-0010102

All dimensions are in m.m.

HD HA AA AB 5 1280 55 200 1000			I		FIXING DI	MENS	SIONS		AC							3
L 500 -1.5 850 1120 355 635 42 1045 1280 55 200 1000	FRAME	NOM.	TOL	A	В	o	CA	×	DIA	무	¥	AA	AB	BA	BA1	88
	KS500L	200	-1.5	850	1120	355	635	45	1045	1280	55	200	1000	436	544	1410

	O	YLIND	HICAL	CYLINDRICAL SHAFT DIMENSION DETAILS	OIMEN	SION	ETAILS	_	BOTH ENDS	(S)											
	2	ш		_	GA	<u>"</u>	VOIT	8	0	9	SE SE		TAPER	SHAF	TAPER SHAFT DIMENSION DETAILS (BOTH ENDS)	SION	ETAIL!	S (BOT	H END	63	
			NOM.	TOL.		NOM.	. TOL.	NOM.	TOL.	NOM.	TOL.	5	LC.	5	D2	ш	E2	ī	Ξ	5	Ø
2300	2530 210	210	120	+.035	127	32	062	18	110	#	+,2	2340 2610		128	M90X4	250	200	32	18	99	က
										28									ă	OC-RMPP	2010100



All dimensions are in m.m.

		I		Ε̈́	FIXING DIME	IMENSIONS				TAPER S	HAFT DI	SHAFT DIMENSIONS	IS DETAILS (F	LS (BOTH)	_	
FRAME	NOM.	T0L.	¥	8	O	CA	×	LC:	5	D2	Ш	E2	Œ.	Ξ	5	O
KS500LX	200	-1.5	850	1120	365	775	42	2760	128	M90X4	250	200	32	8	99	S

ME	Η	DIA	유	AA	AB	BA	BA1	88
XT00	45	1013	1322	200	1000	300	400	1336

DOC-RMPP-0010102

m.m.
nsions are in
All dime

		I	u_	IXING DIN	MENSIONS	co		AC							
FRAME	NOM.	TOL	¥	В	ပ	CA	¥	DIA	皇	¥	ΑA	AB	BA	BA1	88
KS560LX	260	-1,5	950	1250	375	825	42	1200	1700	55	265	1100	350	400	1470

	· 'İ		DOC NO. HMPP-002A-07/2000
	ø	S.	-11
	5	83	
ENDS)	Ξ	20	
AILS (BOTH	F	36	
SHAFT DIMENSION DETAILS (BOTH ENDS)	E2	200	
SHAFT DIME	Ē	250	827
TAPER (DZ	M110X4	
	ы	150	
	LC1	2950	
FRAME		KS560LX	100

NOTES

=	
	-
	:4
	3
	5-
ā	
<u></u>	
	-
-	T

NOTES

